On-board detection of rail corrugation using improved convolutional block attention mechanism

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yang Wang , Hong Xiao , Chaozhi Ma , Zhihai Zhang , Xuhao Cui , Aimin Xu
{"title":"On-board detection of rail corrugation using improved convolutional block attention mechanism","authors":"Yang Wang ,&nbsp;Hong Xiao ,&nbsp;Chaozhi Ma ,&nbsp;Zhihai Zhang ,&nbsp;Xuhao Cui ,&nbsp;Aimin Xu","doi":"10.1016/j.engappai.2025.110349","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging acceleration sensors affixed to the train body enables continuous surveillance of rail corrugation, delivering cost-effectiveness, operational efficiency, and portability. Establishing the correlation between vertical body acceleration and rail corrugation poses a substantial challenge. To ensure uninterrupted monitoring of rail corrugation, an initial development involved constructing a train-track integrated simulation model that accounted for the dynamics of flexible wheelsets and tracks, thereby generating a simulated dataset of vertical body acceleration. Subsequent improvements were made to the conventional Convolutional Block Attention Module (CBAM) architecture, culminating in the proposal of a deep one-dimensional convolutional residual network model named Train Body Vertical Acceleration Network (TBVA-Net), founded on an improved CBAM framework. Training was conducted using the simulated dataset, showcasing the reduced model complexity and total parameter count of the improved CBAM architecture, which notably amplified classification accuracy. The TBVA-Net, employing the refined CBAM, consistently achieved test accuracies exceeding 95%, averaging at 98.6% on the simulated dataset. Validation through field-measured data corroborated the rationale behind the proposed TBVA-Net architecture. Fine-tuning with a limited subset of labeled field data led to a transfer accuracy of 98.5%. This paper presents an innovative approach for detecting rail corrugation through vertical acceleration signals obtained from operational vehicles.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"146 ","pages":"Article 110349"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625003495","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging acceleration sensors affixed to the train body enables continuous surveillance of rail corrugation, delivering cost-effectiveness, operational efficiency, and portability. Establishing the correlation between vertical body acceleration and rail corrugation poses a substantial challenge. To ensure uninterrupted monitoring of rail corrugation, an initial development involved constructing a train-track integrated simulation model that accounted for the dynamics of flexible wheelsets and tracks, thereby generating a simulated dataset of vertical body acceleration. Subsequent improvements were made to the conventional Convolutional Block Attention Module (CBAM) architecture, culminating in the proposal of a deep one-dimensional convolutional residual network model named Train Body Vertical Acceleration Network (TBVA-Net), founded on an improved CBAM framework. Training was conducted using the simulated dataset, showcasing the reduced model complexity and total parameter count of the improved CBAM architecture, which notably amplified classification accuracy. The TBVA-Net, employing the refined CBAM, consistently achieved test accuracies exceeding 95%, averaging at 98.6% on the simulated dataset. Validation through field-measured data corroborated the rationale behind the proposed TBVA-Net architecture. Fine-tuning with a limited subset of labeled field data led to a transfer accuracy of 98.5%. This paper presents an innovative approach for detecting rail corrugation through vertical acceleration signals obtained from operational vehicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信