PARP14 inhibits microglial activation via NNT to alleviate depressive-like behaviors in mice

IF 8.8 2区 医学 Q1 IMMUNOLOGY
Xiaoyu Yu , Tingting Yang , Di Wu , Chenxue Xu , Zhuoran Li , Ao Sun , Shulei Gao , Heng Li , Zhenyu Fan , Rongrong Huang
{"title":"PARP14 inhibits microglial activation via NNT to alleviate depressive-like behaviors in mice","authors":"Xiaoyu Yu ,&nbsp;Tingting Yang ,&nbsp;Di Wu ,&nbsp;Chenxue Xu ,&nbsp;Zhuoran Li ,&nbsp;Ao Sun ,&nbsp;Shulei Gao ,&nbsp;Heng Li ,&nbsp;Zhenyu Fan ,&nbsp;Rongrong Huang","doi":"10.1016/j.bbi.2025.02.017","DOIUrl":null,"url":null,"abstract":"<div><div>Microglial inflammation has been implicated in the pathophysiology of major depressive disorder; however, the underlying biological mechanisms remain inadequately understood. Consequently, we conducted a screening of the Poly ADP-ribose (PAR) polymerase (PARP) family expression in the hippocampus of chronic unpredictable stress (CUS) mouse models and investigated the specific role of PARP14 in microglial inflammation and its association with depression. Here, this study demonstrated the elevated PARP14 expression in the hippocampus of CUS mice. The knockdown of PARP14 in the hippocampus did not mitigate depressive-like behaviors in mice, whereas overexpression of PARP14 significantly mitigated these behaviors. Furthermore, PARP14 was abundant in microglia, and microglial-targeted PARP14 overexpression significantly alleviated depressive-behaviors in CUS, reduced microglial activation, and inhibited the central inflammatory responses. Mechanistically, PARP14 positively regulated nicotinamide nucleotide transhydrogenase (NNT) expression in microglia, and the inflammatory response of microglia induced by PARP14 knockdown was suppressed through NNT overexpression. Additionally, deficiency in NNT led to an accumulation of reactive oxygen species (ROS) and subsequent microglial inflammation, which was effectively inhibited by the ROS inhibitor N-Acetylcysteine. These findings suggest that PARP14 alleviates depressive-like behaviors in mice by inhibiting microglial activation via NTT-mediated clearance of ROS.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"126 ","pages":"Pages 235-246"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125000571","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglial inflammation has been implicated in the pathophysiology of major depressive disorder; however, the underlying biological mechanisms remain inadequately understood. Consequently, we conducted a screening of the Poly ADP-ribose (PAR) polymerase (PARP) family expression in the hippocampus of chronic unpredictable stress (CUS) mouse models and investigated the specific role of PARP14 in microglial inflammation and its association with depression. Here, this study demonstrated the elevated PARP14 expression in the hippocampus of CUS mice. The knockdown of PARP14 in the hippocampus did not mitigate depressive-like behaviors in mice, whereas overexpression of PARP14 significantly mitigated these behaviors. Furthermore, PARP14 was abundant in microglia, and microglial-targeted PARP14 overexpression significantly alleviated depressive-behaviors in CUS, reduced microglial activation, and inhibited the central inflammatory responses. Mechanistically, PARP14 positively regulated nicotinamide nucleotide transhydrogenase (NNT) expression in microglia, and the inflammatory response of microglia induced by PARP14 knockdown was suppressed through NNT overexpression. Additionally, deficiency in NNT led to an accumulation of reactive oxygen species (ROS) and subsequent microglial inflammation, which was effectively inhibited by the ROS inhibitor N-Acetylcysteine. These findings suggest that PARP14 alleviates depressive-like behaviors in mice by inhibiting microglial activation via NTT-mediated clearance of ROS.
PARP14 通过 NNT 抑制小胶质细胞活化,减轻小鼠的抑郁样行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
29.60
自引率
2.00%
发文量
290
审稿时长
28 days
期刊介绍: Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals. As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信