Uncertainty in cardiovascular digital twins despite non-normal errors in 4D flow MRI: Identifying reliable biomarkers such as ventricular relaxation rate

IF 7 2区 医学 Q1 BIOLOGY
Kajsa Tunedal , Tino Ebbers , Gunnar Cedersund
{"title":"Uncertainty in cardiovascular digital twins despite non-normal errors in 4D flow MRI: Identifying reliable biomarkers such as ventricular relaxation rate","authors":"Kajsa Tunedal ,&nbsp;Tino Ebbers ,&nbsp;Gunnar Cedersund","doi":"10.1016/j.compbiomed.2025.109878","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular digital twins and mechanistic models can be used to obtain new biomarkers from patient-specific hemodynamic data. However, such model-derived biomarkers are only clinically relevant if the uncertainty of the biomarkers is smaller than the variation between timepoints/patients. Unfortunately, this uncertainty is challenging to calculate, as the uncertainty of the underlying hemodynamic data is largely unknown and has several sources that are not additive or normally distributed. This violates normality assumptions of current methods; implying that also biomarkers have an unknown uncertainty. To remedy these problems, we herein present a method, with attached code, for uncertainty calculation of model-derived biomarkers using non-normal data. First, we estimated all sources of uncertainty, both normal and non-normal, in hemodynamic data used to personalize an existing model; the errors in 4D flow MRI-derived stroke volumes were 5–20 % and the blood pressure errors were 0 ± 8 mmHg. Second, we estimated the resulting model-derived biomarker uncertainty for 100 simulated datasets, sampled from the data distributions, by: 1) combining data uncertainties 2) parameter estimation, 3) profile-likelihood. The true biomarker values were found within a 95 % confidence interval in 98 % (median) of the cases. This shows both that our estimated data uncertainty is reasonable, and that we can use profile-likelihood despite the non-normality. Finally, we demonstrated that e.g. ventricular relaxation rate has a smaller uncertainty (∼10 %) than the variation across a clinical cohort (∼40 %), meaning that these biomarkers have clinical potential. Our results take us one step closer to the usage of model-derived biomarkers for cardiovascular patient characterization.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109878"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001048252500229X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular digital twins and mechanistic models can be used to obtain new biomarkers from patient-specific hemodynamic data. However, such model-derived biomarkers are only clinically relevant if the uncertainty of the biomarkers is smaller than the variation between timepoints/patients. Unfortunately, this uncertainty is challenging to calculate, as the uncertainty of the underlying hemodynamic data is largely unknown and has several sources that are not additive or normally distributed. This violates normality assumptions of current methods; implying that also biomarkers have an unknown uncertainty. To remedy these problems, we herein present a method, with attached code, for uncertainty calculation of model-derived biomarkers using non-normal data. First, we estimated all sources of uncertainty, both normal and non-normal, in hemodynamic data used to personalize an existing model; the errors in 4D flow MRI-derived stroke volumes were 5–20 % and the blood pressure errors were 0 ± 8 mmHg. Second, we estimated the resulting model-derived biomarker uncertainty for 100 simulated datasets, sampled from the data distributions, by: 1) combining data uncertainties 2) parameter estimation, 3) profile-likelihood. The true biomarker values were found within a 95 % confidence interval in 98 % (median) of the cases. This shows both that our estimated data uncertainty is reasonable, and that we can use profile-likelihood despite the non-normality. Finally, we demonstrated that e.g. ventricular relaxation rate has a smaller uncertainty (∼10 %) than the variation across a clinical cohort (∼40 %), meaning that these biomarkers have clinical potential. Our results take us one step closer to the usage of model-derived biomarkers for cardiovascular patient characterization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信