Network Monitoring Data Recovery Based on Flexible Bi-Directional Model

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qixue Lin;Xiaocan Li;Kun Xie;Jigang Wen;Shiming He;Gaogang Xie;Xiaopeng Fan;Quan Feng
{"title":"Network Monitoring Data Recovery Based on Flexible Bi-Directional Model","authors":"Qixue Lin;Xiaocan Li;Kun Xie;Jigang Wen;Shiming He;Gaogang Xie;Xiaopeng Fan;Quan Feng","doi":"10.1109/TNSE.2024.3507078","DOIUrl":null,"url":null,"abstract":"Comprehensive network monitoring data is crucial for anomaly detection and network optimization tasks. However, due to factors such as sampling strategies and failures in data transmission or storage, only incomplete monitoring data can be obtained. Traditional techniques for completing network monitoring data matrices have limitations in leveraging network-related features and lack the adaptability required for offline and online execution. In this paper, we introduce a novel approach that significantly improves the integration of network features and operational flexibility in data completion tasks. By converting the data matrix into a bipartite graph and integrating network features into the graph's node attributes, we redefine the problem of missing data completion. This transformation reframes the issue as estimating unobserved edges in the bipartite graph. We propose the Bi-directional Bipartite Graph Completion (BGC) model, a flexible framework that seamlessly adapts to both offline and online data completion tasks. This model encapsulates static, dynamic, bi-directional temporal features and network topology, thereby improving the accuracy of unobserved edge estimation. Experiments conducted on two public data traces demonstrate the superiority of our method over six baseline models. Our method not only achieves higher accuracy in offline scenarios but also displays remarkable speed in online situations.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"623-635"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10769064/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Comprehensive network monitoring data is crucial for anomaly detection and network optimization tasks. However, due to factors such as sampling strategies and failures in data transmission or storage, only incomplete monitoring data can be obtained. Traditional techniques for completing network monitoring data matrices have limitations in leveraging network-related features and lack the adaptability required for offline and online execution. In this paper, we introduce a novel approach that significantly improves the integration of network features and operational flexibility in data completion tasks. By converting the data matrix into a bipartite graph and integrating network features into the graph's node attributes, we redefine the problem of missing data completion. This transformation reframes the issue as estimating unobserved edges in the bipartite graph. We propose the Bi-directional Bipartite Graph Completion (BGC) model, a flexible framework that seamlessly adapts to both offline and online data completion tasks. This model encapsulates static, dynamic, bi-directional temporal features and network topology, thereby improving the accuracy of unobserved edge estimation. Experiments conducted on two public data traces demonstrate the superiority of our method over six baseline models. Our method not only achieves higher accuracy in offline scenarios but also displays remarkable speed in online situations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信