Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yanan Zhu;Qinghai Li;Tao Li;Guanghui Wen
{"title":"Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs","authors":"Yanan Zhu;Qinghai Li;Tao Li;Guanghui Wen","doi":"10.1109/TNSE.2024.3506732","DOIUrl":null,"url":null,"abstract":"This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math>$N$</tex-math></inline-formula> convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by <inline-formula><tex-math>$N$</tex-math></inline-formula> distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of <inline-formula><tex-math>${\\mathcal O}(\\frac{\\ln (k)}{\\sqrt{k} })$</tex-math></inline-formula> as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, <inline-formula><tex-math>${\\mathcal O}(\\frac{1}{k})$</tex-math></inline-formula>. Finally, rigorous simulation results verify the correctness of theoretical findings.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"610-622"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767401/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of $N$ convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by $N$ distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of ${\mathcal O}(\frac{\ln (k)}{\sqrt{k} })$ as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, ${\mathcal O}(\frac{1}{k})$. Finally, rigorous simulation results verify the correctness of theoretical findings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信