{"title":"Graph Learning for Power Flow Analysis: A Global-Receptive Graph Iteration Network Method","authors":"Junyan Huang;Yuanzheng Li;Shangyang He;Guokai Hao;Chunjie Zhou;Zhigang Zeng","doi":"10.1109/TNSE.2024.3506012","DOIUrl":null,"url":null,"abstract":"The data-driven methods based on the graph convolution architecture provide a promising direction for accelerating power flow (PF) calculation. These methods directly predict operational states of power systems according to given conditions, such as loads, states of buses, topology, etc. However, we find that the neighborhood aggregation of the graph convolution architecture violates operational constraints of power systems. In this paper, a global-receptive graph iteration architecture that overcomes this shortcoming is designed to replace the graph convolution architecture. Specifically, Newton's method, one of the most classical methods for PF, is embedded into the graph iteration network (GIN) to form an implicit residual learning architecture. To retain the interpretability, the GIN follows a non-activation paradigm, in which the ability of non-linear representation stems from the iterative architecture rather than the activation function. Finally, without the demand to reclaim global information, the GIN allows shallower network structure by eliminating fully connected layers. Extensive numerical experiments are conducted on IEEE 30-bus, 57-bus, 118-bus, and 300-bus power systems. The results validate the higher computational efficiency and the better prediction performance of the proposed method, compared with both classical approaches and precedent data-driven approaches.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"599-609"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10767377/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The data-driven methods based on the graph convolution architecture provide a promising direction for accelerating power flow (PF) calculation. These methods directly predict operational states of power systems according to given conditions, such as loads, states of buses, topology, etc. However, we find that the neighborhood aggregation of the graph convolution architecture violates operational constraints of power systems. In this paper, a global-receptive graph iteration architecture that overcomes this shortcoming is designed to replace the graph convolution architecture. Specifically, Newton's method, one of the most classical methods for PF, is embedded into the graph iteration network (GIN) to form an implicit residual learning architecture. To retain the interpretability, the GIN follows a non-activation paradigm, in which the ability of non-linear representation stems from the iterative architecture rather than the activation function. Finally, without the demand to reclaim global information, the GIN allows shallower network structure by eliminating fully connected layers. Extensive numerical experiments are conducted on IEEE 30-bus, 57-bus, 118-bus, and 300-bus power systems. The results validate the higher computational efficiency and the better prediction performance of the proposed method, compared with both classical approaches and precedent data-driven approaches.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.