Yu Qiao;Chaoning Zhang;Apurba Adhikary;Choong Seon Hong
{"title":"Logit Calibration and Feature Contrast for Robust Federated Learning on Non-IID Data","authors":"Yu Qiao;Chaoning Zhang;Apurba Adhikary;Choong Seon Hong","doi":"10.1109/TNSE.2024.3507273","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a privacy-preserving distributed framework for collaborative model training in edge networks. However, challenges such as vulnerability to adversarial examples and non-independent and identically distributed (non-IID) data across devices hinder the deployment of adversarially robust and accurate models at the edge. While adversarial training (AT) is widely recognized as an effective defense strategy against adversarial attacks in centralized training, we shed light on the adverse effects of directly applying AT in FL, which can severely compromise accuracy under non-IID scenarios. To address this limitation, this paper proposes <underline>FatCC</u>, which incorporates local logit <underline>C</u>alibration and global feature <underline>C</u>ontrast into the vanilla federated adversarial training (<underline>Fat</u>) process from both logit and feature perspectives. This approach effectively enhances the robust accuracy (RA) and clean accuracy (CA) of the federated system. First, we introduce logit calibration, where the logits are calibrated during local adversarial updates, thereby improving adversarial robustness. Second, FatCC incorporates feature contrast, which involves a global alignment term that aligns each local representation with corresponding unbiased global features, thus enhancing robustness and accuracy. Extensive experiments across multiple datasets demonstrate that FatCC achieves comparable or superior performance gains in both CA and RA compared to other baselines.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"636-652"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10769051/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) is a privacy-preserving distributed framework for collaborative model training in edge networks. However, challenges such as vulnerability to adversarial examples and non-independent and identically distributed (non-IID) data across devices hinder the deployment of adversarially robust and accurate models at the edge. While adversarial training (AT) is widely recognized as an effective defense strategy against adversarial attacks in centralized training, we shed light on the adverse effects of directly applying AT in FL, which can severely compromise accuracy under non-IID scenarios. To address this limitation, this paper proposes FatCC, which incorporates local logit Calibration and global feature Contrast into the vanilla federated adversarial training (Fat) process from both logit and feature perspectives. This approach effectively enhances the robust accuracy (RA) and clean accuracy (CA) of the federated system. First, we introduce logit calibration, where the logits are calibrated during local adversarial updates, thereby improving adversarial robustness. Second, FatCC incorporates feature contrast, which involves a global alignment term that aligns each local representation with corresponding unbiased global features, thus enhancing robustness and accuracy. Extensive experiments across multiple datasets demonstrate that FatCC achieves comparable or superior performance gains in both CA and RA compared to other baselines.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.