EEG-CNN-Souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Eamin Chaudary, Sheeraz Ahmad Khan, Wajid Mumtaz
{"title":"EEG-CNN-Souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI","authors":"Eamin Chaudary,&nbsp;Sheeraz Ahmad Khan,&nbsp;Wajid Mumtaz","doi":"10.1016/j.compeleceng.2025.110189","DOIUrl":null,"url":null,"abstract":"<div><div>Emotion recognition is a key aspect of human–robot interaction (HRI), which requires social intelligence to perceive and react to human affective states. This paper introduces EEG-CNN-Souping, a novel approach that applies the “Model Soups” technique to a self-designed EEG-CNN model for classifying electroencephalogram (EEG) signals into emotions. EEG-CNN-Souping improves the model performance and efficiency by averaging the weights of multiple EEG-CNN models trained on different sizes of scalograms, which are acquired by applying continuous wavelet transform (CWT) and normalization to the EEG signals. The scalograms capture the time-varying patterns of the EEG signals effectively. The approach also uses data augmentation and gradient class activation map (Grad-Cam) visualization for robustness and interpretability respectively. The model is evaluated on a common dataset that is the SEED dataset and achieves a 99.31% accuracy, surpassing other state-of-the-art deep learning (DL) models in terms of accuracy, computational cost, and time efficiency. The prediction time for EEG-CNN-Souping is only 6 ms. The explainable artificial intelligence (XAI) method Grad-CAM is utilized for interpretation of predictions. EEG-CNN-Souping is computationally inexpensive and time-efficient.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110189"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625001326","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion recognition is a key aspect of human–robot interaction (HRI), which requires social intelligence to perceive and react to human affective states. This paper introduces EEG-CNN-Souping, a novel approach that applies the “Model Soups” technique to a self-designed EEG-CNN model for classifying electroencephalogram (EEG) signals into emotions. EEG-CNN-Souping improves the model performance and efficiency by averaging the weights of multiple EEG-CNN models trained on different sizes of scalograms, which are acquired by applying continuous wavelet transform (CWT) and normalization to the EEG signals. The scalograms capture the time-varying patterns of the EEG signals effectively. The approach also uses data augmentation and gradient class activation map (Grad-Cam) visualization for robustness and interpretability respectively. The model is evaluated on a common dataset that is the SEED dataset and achieves a 99.31% accuracy, surpassing other state-of-the-art deep learning (DL) models in terms of accuracy, computational cost, and time efficiency. The prediction time for EEG-CNN-Souping is only 6 ms. The explainable artificial intelligence (XAI) method Grad-CAM is utilized for interpretation of predictions. EEG-CNN-Souping is computationally inexpensive and time-efficient.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信