A prospective real-time transfer learning approach to estimate influenza hospitalizations with limited data

IF 3 3区 医学 Q2 INFECTIOUS DISEASES
Austin G. Meyer , Fred Lu , Leonardo Clemente , Mauricio Santillana
{"title":"A prospective real-time transfer learning approach to estimate influenza hospitalizations with limited data","authors":"Austin G. Meyer ,&nbsp;Fred Lu ,&nbsp;Leonardo Clemente ,&nbsp;Mauricio Santillana","doi":"10.1016/j.epidem.2025.100816","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate, real-time forecasts of influenza hospitalizations would facilitate prospective resource allocation and public health preparedness. State-of-the-art machine learning methods are a promising approach to produce such forecasts, but they require extensive historical data to be properly trained. Unfortunately, data on influenza hospitalizations, for the 50 states in the United States, are only available since the beginning of 2020. In addition, the data are far from perfect as they were under-reported for several months before health systems began consistently submitting their data. To address these issues, we propose a transfer learning approach. We extend the currently available two-season dataset for state-level influenza hospitalizations by an additional ten seasons. Our method leverages influenza-like illness (ILI) data to infer historical estimates of influenza hospitalizations. This data augmentation enables the implementation of advanced machine learning techniques, multi-horizon training, and an ensemble of models to improve hospitalization forecasts. We evaluated the performance of our machine learning approaches by prospectively producing forecasts for future weeks and submitting them in real time to the Centers for Disease Control and Prevention FluSight challenges during two seasons: 2022–2023 and 2023–2024. Our methodology demonstrated good accuracy and reliability, achieving a fourth place finish (among 20 participating teams) in the 2022–23 and a second place finish (among 20 participating teams) in the 2023–24 CDC FluSight challenges. Our findings highlight the utility of data augmentation and knowledge transfer in the application of machine learning models to public health surveillance where only limited historical data is available.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"Article 100816"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate, real-time forecasts of influenza hospitalizations would facilitate prospective resource allocation and public health preparedness. State-of-the-art machine learning methods are a promising approach to produce such forecasts, but they require extensive historical data to be properly trained. Unfortunately, data on influenza hospitalizations, for the 50 states in the United States, are only available since the beginning of 2020. In addition, the data are far from perfect as they were under-reported for several months before health systems began consistently submitting their data. To address these issues, we propose a transfer learning approach. We extend the currently available two-season dataset for state-level influenza hospitalizations by an additional ten seasons. Our method leverages influenza-like illness (ILI) data to infer historical estimates of influenza hospitalizations. This data augmentation enables the implementation of advanced machine learning techniques, multi-horizon training, and an ensemble of models to improve hospitalization forecasts. We evaluated the performance of our machine learning approaches by prospectively producing forecasts for future weeks and submitting them in real time to the Centers for Disease Control and Prevention FluSight challenges during two seasons: 2022–2023 and 2023–2024. Our methodology demonstrated good accuracy and reliability, achieving a fourth place finish (among 20 participating teams) in the 2022–23 and a second place finish (among 20 participating teams) in the 2023–24 CDC FluSight challenges. Our findings highlight the utility of data augmentation and knowledge transfer in the application of machine learning models to public health surveillance where only limited historical data is available.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信