{"title":"Turing instability of a discrete competitive single diffusion-driven Lotka–Volterra model","authors":"Mingyao Wen , Guang Zhang , Yubin Yan","doi":"10.1016/j.chaos.2025.116146","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a discrete competitive Lotka–Volterra system with single diffusion under Neumann boundary conditions. It establishes the conditions for Turing instability and identifies the precise Turing bifurcation when the diffusion coefficient is used as a bifurcation parameter. Within Turing unstable regions, a variety of Turing patterns are explored via numerical simulations, encompassing lattice, nematode, auspicious cloud, spiral wave, polygon, and stripe patterns, as well as their combinations. The periodicity and complexity of these patterns are verified through bifurcation simulations, Lyapunov exponent analysis, trajectory or phase diagrams. These methods are also applicable to other single diffusion systems, including partial dissipation systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116146"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001596","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a discrete competitive Lotka–Volterra system with single diffusion under Neumann boundary conditions. It establishes the conditions for Turing instability and identifies the precise Turing bifurcation when the diffusion coefficient is used as a bifurcation parameter. Within Turing unstable regions, a variety of Turing patterns are explored via numerical simulations, encompassing lattice, nematode, auspicious cloud, spiral wave, polygon, and stripe patterns, as well as their combinations. The periodicity and complexity of these patterns are verified through bifurcation simulations, Lyapunov exponent analysis, trajectory or phase diagrams. These methods are also applicable to other single diffusion systems, including partial dissipation systems.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.