MADONNA: Browser-based malicious domain detection using Optimized Neural Network by leveraging AI and feature analysis

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Janaka Senanayake , Sampath Rajapaksha , Naoto Yanai , Harsha Kalutarage , Chika Komiya
{"title":"MADONNA: Browser-based malicious domain detection using Optimized Neural Network by leveraging AI and feature analysis","authors":"Janaka Senanayake ,&nbsp;Sampath Rajapaksha ,&nbsp;Naoto Yanai ,&nbsp;Harsha Kalutarage ,&nbsp;Chika Komiya","doi":"10.1016/j.cose.2025.104371","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting malicious domains is a critical aspect of cybersecurity, with recent advancements leveraging Artificial Intelligence (AI) to enhance accuracy and speed. However, existing browser-based solutions often struggle to achieve both high accuracy and efficient throughput. In this paper, we present MADONNA, a novel browser-based malicious domain detector that exceeds the current state-of-the-art in both accuracy and throughput. MADONNA utilizes feature selection through correlation analysis and model optimization techniques, including pruning and quantization, to significantly enhance detection speed without compromising accuracy. Our approach employs a Shallow Neural Network (SNN) architecture, outperforming Large Language Models (LLMs) and state-of-the-art methods by improving accuracy by 6% (reaching 0.94) and F1-score by 4% (reaching 0.92). We further integrated MADONNA into a Google Chrome extension, demonstrating its practical application with a real-time domain detection accuracy of 94% and an average inference time of 0.87 s. These results highlight MADONNA’s effectiveness in balancing speed and accuracy, providing a scalable, real-world solution for malicious domain detection.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"152 ","pages":"Article 104371"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825000604","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting malicious domains is a critical aspect of cybersecurity, with recent advancements leveraging Artificial Intelligence (AI) to enhance accuracy and speed. However, existing browser-based solutions often struggle to achieve both high accuracy and efficient throughput. In this paper, we present MADONNA, a novel browser-based malicious domain detector that exceeds the current state-of-the-art in both accuracy and throughput. MADONNA utilizes feature selection through correlation analysis and model optimization techniques, including pruning and quantization, to significantly enhance detection speed without compromising accuracy. Our approach employs a Shallow Neural Network (SNN) architecture, outperforming Large Language Models (LLMs) and state-of-the-art methods by improving accuracy by 6% (reaching 0.94) and F1-score by 4% (reaching 0.92). We further integrated MADONNA into a Google Chrome extension, demonstrating its practical application with a real-time domain detection accuracy of 94% and an average inference time of 0.87 s. These results highlight MADONNA’s effectiveness in balancing speed and accuracy, providing a scalable, real-world solution for malicious domain detection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信