{"title":"Non-symmetric Jacobi polynomials of type BC1 as vector-valued polynomials, Part 1: Spherical functions","authors":"M. van Horssen, M. van Pruijssen","doi":"10.1016/j.indag.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>We study non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> by means of vector-valued and matrix-valued orthogonal polynomials. The interpretation as matrix-valued orthogonal polynomials yields a new expression of the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> in terms of the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. In this interpretation, the Cherednik operator, that has the non-symmetric Jacobi polynomials as eigenfunctions, corresponds to two shift operators for the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>We show that the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> with so-called geometric root multiplicities, interpreted as vector-valued polynomials, can be identified with spherical functions on the sphere <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> associated with the fundamental spin-representation of <span><math><mrow><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The Cherednik operator corresponds to the Dirac operator for the spinors on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in this interpretation.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 593-608"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001071","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study non-symmetric Jacobi polynomials of type by means of vector-valued and matrix-valued orthogonal polynomials. The interpretation as matrix-valued orthogonal polynomials yields a new expression of the non-symmetric Jacobi polynomials of type in terms of the symmetric Jacobi polynomials of type . In this interpretation, the Cherednik operator, that has the non-symmetric Jacobi polynomials as eigenfunctions, corresponds to two shift operators for the symmetric Jacobi polynomials of type .
We show that the non-symmetric Jacobi polynomials of type with so-called geometric root multiplicities, interpreted as vector-valued polynomials, can be identified with spherical functions on the sphere associated with the fundamental spin-representation of . The Cherednik operator corresponds to the Dirac operator for the spinors on in this interpretation.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.