MMRT: MultiMut Recursive Tree for predicting functional effects of high-order protein variants from low-order variants

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bryce Forrest , Houssemeddine Derbel , Zhongming Zhao , Qian Liu
{"title":"MMRT: MultiMut Recursive Tree for predicting functional effects of high-order protein variants from low-order variants","authors":"Bryce Forrest ,&nbsp;Houssemeddine Derbel ,&nbsp;Zhongming Zhao ,&nbsp;Qian Liu","doi":"10.1016/j.csbj.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>Protein sequences primarily determine their stability and functions. Mutations may occur at one, two, or three positions at the same time (low-order variants) or at multiple positions simultaneously (high-order variants), which affect protein functions. So far, low-order variants, such as single variants, double variants, and triple variants, have been well-studied through high-throughput experimental scanning techniques and computational prediction methods. However, research on high-order variants remains limited because of the difficulty of scanning an exponentially large number of potential variant combinations. Nonetheless, studying higher-order variants is crucial for understanding the pathogenesis of complex diseases, advancing protein engineering, and driving precision medicine. In this work, we introduce a novel deep learning model, namely <em>MultiMut Recursive Tree</em> (MMRT), to address this challenge of predicting the functional effects of high-order variants. MMRT integrates deep learning with a recursive tree framework to leverage the information from low-order variants to predict functional effects of high-order variants. We evaluated MMRT on datasets comprising 685,593 high-order variants. Our results (mean Spearman’s correlation coefficient 0.55) demonstrated that MMRT outperformed three existing state-of-the-art methods: ESM (evolutionary scale modeling), DeepSequence, and ECNet (evolutionary context-integrated neural network). MMRT thus provides more accurate prediction of the functional effects of high-order protein variants, offering great potential for aiding the interpretation of variants in human disease studies.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 672-681"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000388","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein sequences primarily determine their stability and functions. Mutations may occur at one, two, or three positions at the same time (low-order variants) or at multiple positions simultaneously (high-order variants), which affect protein functions. So far, low-order variants, such as single variants, double variants, and triple variants, have been well-studied through high-throughput experimental scanning techniques and computational prediction methods. However, research on high-order variants remains limited because of the difficulty of scanning an exponentially large number of potential variant combinations. Nonetheless, studying higher-order variants is crucial for understanding the pathogenesis of complex diseases, advancing protein engineering, and driving precision medicine. In this work, we introduce a novel deep learning model, namely MultiMut Recursive Tree (MMRT), to address this challenge of predicting the functional effects of high-order variants. MMRT integrates deep learning with a recursive tree framework to leverage the information from low-order variants to predict functional effects of high-order variants. We evaluated MMRT on datasets comprising 685,593 high-order variants. Our results (mean Spearman’s correlation coefficient 0.55) demonstrated that MMRT outperformed three existing state-of-the-art methods: ESM (evolutionary scale modeling), DeepSequence, and ECNet (evolutionary context-integrated neural network). MMRT thus provides more accurate prediction of the functional effects of high-order protein variants, offering great potential for aiding the interpretation of variants in human disease studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信