Restriction theorems and root systems for symmetric superspaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Shifra Reif , Siddhartha Sahi , Vera Serganova
{"title":"Restriction theorems and root systems for symmetric superspaces","authors":"Shifra Reif ,&nbsp;Siddhartha Sahi ,&nbsp;Vera Serganova","doi":"10.1016/j.indag.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider those involutions <span><math><mi>θ</mi></math></span> of a finite-dimensional Kac–Moody Lie superalgebra <span><math><mi>g</mi></math></span>, with associated decomposition <span><math><mrow><mi>g</mi><mo>=</mo><mi>k</mi><mo>⊕</mo><mi>p</mi></mrow></math></span>, for which a Cartan subspace <span><math><mi>a</mi></math></span> in <span><math><msub><mrow><mi>p</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub></math></span> is self-centralizing in <span><math><mi>p</mi></math></span>. For such <span><math><mi>θ</mi></math></span> the restriction map <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span> from <span><math><mi>p</mi></math></span> to <span><math><mi>a</mi></math></span> is injective on the algebra <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> of <span><math><mi>k</mi></math></span>-invariant polynomials on <span><math><mi>p</mi></math></span>. There are five infinite families and five exceptional cases of such involutions, and for each case we explicitly determine the structure of <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> by giving a complete set of generators for the image of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span>. We also determine precisely when the restriction map <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span> from <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow><mrow><mi>g</mi></mrow></msup></mrow></math></span> to <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> is surjective. Finally we introduce the notion of a generalized restricted root system, and show that in the present setting the <span><math><mi>a</mi></math></span>-roots <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> always form such a system.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 609-630"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider those involutions θ of a finite-dimensional Kac–Moody Lie superalgebra g, with associated decomposition g=kp, for which a Cartan subspace a in p0̄ is self-centralizing in p. For such θ the restriction map Cθ from p to a is injective on the algebra P(p)k of k-invariant polynomials on p. There are five infinite families and five exceptional cases of such involutions, and for each case we explicitly determine the structure of P(p)k by giving a complete set of generators for the image of Cθ. We also determine precisely when the restriction map Rθ from P(g)g to P(p)k is surjective. Finally we introduce the notion of a generalized restricted root system, and show that in the present setting the a-roots Δ(a,g) always form such a system.
对称超空间的约束定理和根系统
本文研究了有限维Kac-Moody Lie超代数g的对合θ,并给出了相应的分解g=k⊕p,其中p0中的Cartan子空间a在p中自集中。对于这样的对合θ,从p到a的限制映射Cθ在p上的k不变多项式的代数p (p)k上是内射的。这类对合有5个无限族和5个例外情况。对于每种情况,我们通过给出Cθ像的一组完整的生成器来明确地确定P(P)k的结构。我们还精确地确定了从P(g)g到P(P)k的限制映射Rθ是满射的情况。最后,我们引入了广义受限根的概念,并证明了在目前的情况下,a根Δ(a,g)总是形成这样一个系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信