{"title":"Restriction theorems and root systems for symmetric superspaces","authors":"Shifra Reif , Siddhartha Sahi , Vera Serganova","doi":"10.1016/j.indag.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider those involutions <span><math><mi>θ</mi></math></span> of a finite-dimensional Kac–Moody Lie superalgebra <span><math><mi>g</mi></math></span>, with associated decomposition <span><math><mrow><mi>g</mi><mo>=</mo><mi>k</mi><mo>⊕</mo><mi>p</mi></mrow></math></span>, for which a Cartan subspace <span><math><mi>a</mi></math></span> in <span><math><msub><mrow><mi>p</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></msub></math></span> is self-centralizing in <span><math><mi>p</mi></math></span>. For such <span><math><mi>θ</mi></math></span> the restriction map <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span> from <span><math><mi>p</mi></math></span> to <span><math><mi>a</mi></math></span> is injective on the algebra <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> of <span><math><mi>k</mi></math></span>-invariant polynomials on <span><math><mi>p</mi></math></span>. There are five infinite families and five exceptional cases of such involutions, and for each case we explicitly determine the structure of <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> by giving a complete set of generators for the image of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span>. We also determine precisely when the restriction map <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>θ</mi></mrow></msub></math></span> from <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow><mrow><mi>g</mi></mrow></msup></mrow></math></span> to <span><math><mrow><mi>P</mi><msup><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> is surjective. Finally we introduce the notion of a generalized restricted root system, and show that in the present setting the <span><math><mi>a</mi></math></span>-roots <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> always form such a system.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 609-630"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider those involutions of a finite-dimensional Kac–Moody Lie superalgebra , with associated decomposition , for which a Cartan subspace in is self-centralizing in . For such the restriction map from to is injective on the algebra of -invariant polynomials on . There are five infinite families and five exceptional cases of such involutions, and for each case we explicitly determine the structure of by giving a complete set of generators for the image of . We also determine precisely when the restriction map from to is surjective. Finally we introduce the notion of a generalized restricted root system, and show that in the present setting the -roots always form such a system.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.