DNA Framework-Enabled Ocular Barrier Penetration for Microinvasive Antiangiogenic Therapy

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruobing Wang, Yanhan Liu, Yuelu Zhang, Qiuxue Yi, Wenjuan Xiao, Tianqin Wang, Qi Chen, Jiayang Xiang, Lu Song, Chunhong Li, Fan Li, Lin Liu, Qian Li, Chunhai Fan, Xiuhai Mao, Xiaolei Zuo
{"title":"DNA Framework-Enabled Ocular Barrier Penetration for Microinvasive Antiangiogenic Therapy","authors":"Ruobing Wang, Yanhan Liu, Yuelu Zhang, Qiuxue Yi, Wenjuan Xiao, Tianqin Wang, Qi Chen, Jiayang Xiang, Lu Song, Chunhong Li, Fan Li, Lin Liu, Qian Li, Chunhai Fan, Xiuhai Mao, Xiaolei Zuo","doi":"10.1021/jacs.4c16529","DOIUrl":null,"url":null,"abstract":"Therapeutic aptamers targeting vascular endothelial growth factor A (VEGFA) have advanced the development of antiangiogenic drugs for treating choroidal neovascularization (CNV) diseases. However, despite FDA approval for use in neovascular age-related macular degeneration (nAMD), the effective <i>in vivo</i> delivery of therapeutic aptamers is hindered by ocular barriers and rapid degradation in biofluids. Here, we demonstrated a microinvasive delivery of VEGFA-targeted aptamers to the ocular fundus using tetrahedral framework nucleic acids (tFNAs). Upon incorporating anti-VEGFA aptamers to the tFNAs (apt-tFNA), we interrogated their penetration across the outer blood–retinal barrier (oBRB) to the innermost retinal in the eyeball, while maintaining their structural integrity. In addition, the apt-tFNA showed superior efficacy in inhibiting vascular proliferation and migration by neutralizing VEGFA. Furthermore, in a laser-induced CNV mouse model, subconjunctival injection of apt-tFNA exhibited comparable antiangiogenic efficacy to intravitreal ranibizumab, a monoclonal antibody fragment. These findings suggest that FNAs can effectively deliver therapeutic aptamers to the ocular fundus without compromising their antiangiogenic properties, highlighting their potential for microinvasive and feasible periocular administration in treating neovascular ophthalmic diseases.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"20 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic aptamers targeting vascular endothelial growth factor A (VEGFA) have advanced the development of antiangiogenic drugs for treating choroidal neovascularization (CNV) diseases. However, despite FDA approval for use in neovascular age-related macular degeneration (nAMD), the effective in vivo delivery of therapeutic aptamers is hindered by ocular barriers and rapid degradation in biofluids. Here, we demonstrated a microinvasive delivery of VEGFA-targeted aptamers to the ocular fundus using tetrahedral framework nucleic acids (tFNAs). Upon incorporating anti-VEGFA aptamers to the tFNAs (apt-tFNA), we interrogated their penetration across the outer blood–retinal barrier (oBRB) to the innermost retinal in the eyeball, while maintaining their structural integrity. In addition, the apt-tFNA showed superior efficacy in inhibiting vascular proliferation and migration by neutralizing VEGFA. Furthermore, in a laser-induced CNV mouse model, subconjunctival injection of apt-tFNA exhibited comparable antiangiogenic efficacy to intravitreal ranibizumab, a monoclonal antibody fragment. These findings suggest that FNAs can effectively deliver therapeutic aptamers to the ocular fundus without compromising their antiangiogenic properties, highlighting their potential for microinvasive and feasible periocular administration in treating neovascular ophthalmic diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信