Pyridinium Rotor Strategy toward a Robust Photothermal Agent for STING Activation and Multimodal Image-Guided Immunotherapy for Triple-Negative Breast Cancer

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shipeng Ning, Ping Shangguan, Xinyan Zhu, Xinwen Ou, Kaiyuan Wang, Meng Suo, Hanchen Shen, Xiuxin Lu, Xianqing Wei, Tianfu Zhang, Xiaoyuan Chen, Ben Zhong Tang
{"title":"Pyridinium Rotor Strategy toward a Robust Photothermal Agent for STING Activation and Multimodal Image-Guided Immunotherapy for Triple-Negative Breast Cancer","authors":"Shipeng Ning, Ping Shangguan, Xinyan Zhu, Xinwen Ou, Kaiyuan Wang, Meng Suo, Hanchen Shen, Xiuxin Lu, Xianqing Wei, Tianfu Zhang, Xiaoyuan Chen, Ben Zhong Tang","doi":"10.1021/jacs.4c15534","DOIUrl":null,"url":null,"abstract":"The immunosuppressive tumor microenvironment in triple-negative breast cancer could hinder the response to thorough immunotherapy and diminish the antitumor efficacy. Although the STING pathway emerges as a promising target to remedy defects, uncertain drug delivery might lead to off-target inflammatory reactions. Here, we manifest a novel phototheranostic agent with an aggregation-induced emission property that guided the pharmacological activation of a STING agonist for photothermal immunotherapy to create an immunologically “hot” tumor. A pyridinium rotor strategy is proposed to develop a positively charged TBTP-Bz, which is stably coincorporated with a STING agonist MSA-2 into thermal-responsive exosome-liposome hybrid nanoparticles for tumor-targeting delivery. TBTP-Bz exhibits aggregation-enhanced NIR-II emission and a photoacoustic signal, accomplishing real-time tumor tracking. Its photothermal stimulation induces immunogenic cancer cell death and promotes the precise release of MSA-2, thus boosting STING activation and STING-mediated type I interferon production. Significantly, single-dose photoimmunotherapy effectively suppresses abscopal tumor growth and provokes an immune memory effect to inhibit postsurgical recurrent and rechallenged tumors. This demonstrates promising clinical potential for poorly immunogenic breast cancer.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"16 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The immunosuppressive tumor microenvironment in triple-negative breast cancer could hinder the response to thorough immunotherapy and diminish the antitumor efficacy. Although the STING pathway emerges as a promising target to remedy defects, uncertain drug delivery might lead to off-target inflammatory reactions. Here, we manifest a novel phototheranostic agent with an aggregation-induced emission property that guided the pharmacological activation of a STING agonist for photothermal immunotherapy to create an immunologically “hot” tumor. A pyridinium rotor strategy is proposed to develop a positively charged TBTP-Bz, which is stably coincorporated with a STING agonist MSA-2 into thermal-responsive exosome-liposome hybrid nanoparticles for tumor-targeting delivery. TBTP-Bz exhibits aggregation-enhanced NIR-II emission and a photoacoustic signal, accomplishing real-time tumor tracking. Its photothermal stimulation induces immunogenic cancer cell death and promotes the precise release of MSA-2, thus boosting STING activation and STING-mediated type I interferon production. Significantly, single-dose photoimmunotherapy effectively suppresses abscopal tumor growth and provokes an immune memory effect to inhibit postsurgical recurrent and rechallenged tumors. This demonstrates promising clinical potential for poorly immunogenic breast cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信