Rate-Matching Framework for RSMA-Enabled Multibeam LEO Satellite Communications

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jaehyup Seong;Juha Park;Juhwan Lee;Jungwoo Lee;Jung-Bin Kim;Wonjae Shin;H. Vincent Poor
{"title":"Rate-Matching Framework for RSMA-Enabled Multibeam LEO Satellite Communications","authors":"Jaehyup Seong;Juha Park;Juhwan Lee;Jungwoo Lee;Jung-Bin Kim;Wonjae Shin;H. Vincent Poor","doi":"10.1109/TSP.2025.3543753","DOIUrl":null,"url":null,"abstract":"With the goal of ubiquitous global connectivity, multibeam low Earth orbit (LEO) satellite communications (SATCOM) has attracted significant attention in recent years. The traffic demands of users are heterogeneous within the broad coverage of SATCOM due to different geological conditions and user distributions. Motivated by this, this paper proposes a novel rate-matching (RM) framework based on rate-splitting multiple access (RSMA) that minimizes the difference between the traffic demands and offered rates while simultaneously minimizing transmit power for power-hungry satellite payloads. Moreover, channel phase perturbations arising from channel estimation and feedback errors are considered to capture realistic multibeam LEO SATCOM scenarios. To tackle the non-convexity of the RSMA-based RM problem under phase perturbations, we convert it into a tractable convex form via the successive convex approximation method and present an efficient algorithm to solve the RM problem. Through the extensive numerical analysis across various traffic demand distribution and channel state information accuracy at LEO satellites, we demonstrate that RSMA flexibly allocates the power between common and private streams according to different traffic patterns across beams, thereby efficiently satisfying users’ non-uniform traffic demands. In particular, the use of common messages plays a vital role in overcoming the limited spatial dimension available at LEO satellites, enabling it to manage inter-/intra-beam interference effectively in the presence of phase perturbation.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1426-1443"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10896843/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the goal of ubiquitous global connectivity, multibeam low Earth orbit (LEO) satellite communications (SATCOM) has attracted significant attention in recent years. The traffic demands of users are heterogeneous within the broad coverage of SATCOM due to different geological conditions and user distributions. Motivated by this, this paper proposes a novel rate-matching (RM) framework based on rate-splitting multiple access (RSMA) that minimizes the difference between the traffic demands and offered rates while simultaneously minimizing transmit power for power-hungry satellite payloads. Moreover, channel phase perturbations arising from channel estimation and feedback errors are considered to capture realistic multibeam LEO SATCOM scenarios. To tackle the non-convexity of the RSMA-based RM problem under phase perturbations, we convert it into a tractable convex form via the successive convex approximation method and present an efficient algorithm to solve the RM problem. Through the extensive numerical analysis across various traffic demand distribution and channel state information accuracy at LEO satellites, we demonstrate that RSMA flexibly allocates the power between common and private streams according to different traffic patterns across beams, thereby efficiently satisfying users’ non-uniform traffic demands. In particular, the use of common messages plays a vital role in overcoming the limited spatial dimension available at LEO satellites, enabling it to manage inter-/intra-beam interference effectively in the presence of phase perturbation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信