{"title":"Consistent Prompt Tuning for Generalized Category Discovery","authors":"Muli Yang, Jie Yin, Yanan Gu, Cheng Deng, Hanwang Zhang, Hongyuan Zhu","doi":"10.1007/s11263-024-02343-w","DOIUrl":null,"url":null,"abstract":"<p>Generalized Category Discovery (GCD) aims at discovering both known and unknown classes in unlabeled data, using the knowledge learned from a limited set of labeled data. Despite today’s foundation models being trained with Internet-scale multi-modal corpus, we find that they still struggle in GCD due to the ambiguity in class definitions. In this paper, we present Consistent Prompt Tuning (CPT) to disambiguate the classes for large vision-language models (<i>e</i>.<i>g</i>., CLIP). To this end, CPT learns a set of “task + class” prompts for labeled and unlabeled data of both known and unknown classes, with the “task” tokens globally shared across classes, which contain a unified class definition pattern, <i>e</i>.<i>g</i>., “the foreground is an animal named” or “the background scene is”. These prompts are optimized with two efficient regularization techniques that encourage consistent global and local relationships between any two matched inputs. CPT is evaluated on various existing GCD benchmarks, as well as in new practical scenarios with fewer annotations and customized class definitions, demonstrating clear superiority and broad versatility over existing state-of-the-art methods.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02343-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Generalized Category Discovery (GCD) aims at discovering both known and unknown classes in unlabeled data, using the knowledge learned from a limited set of labeled data. Despite today’s foundation models being trained with Internet-scale multi-modal corpus, we find that they still struggle in GCD due to the ambiguity in class definitions. In this paper, we present Consistent Prompt Tuning (CPT) to disambiguate the classes for large vision-language models (e.g., CLIP). To this end, CPT learns a set of “task + class” prompts for labeled and unlabeled data of both known and unknown classes, with the “task” tokens globally shared across classes, which contain a unified class definition pattern, e.g., “the foreground is an animal named” or “the background scene is”. These prompts are optimized with two efficient regularization techniques that encourage consistent global and local relationships between any two matched inputs. CPT is evaluated on various existing GCD benchmarks, as well as in new practical scenarios with fewer annotations and customized class definitions, demonstrating clear superiority and broad versatility over existing state-of-the-art methods.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.