{"title":"Imbuing, Enrichment and Calibration: Leveraging Language for Unseen Domain Extension","authors":"Chenyi Jiang, Jianqin Zhao, Jingjing Deng, Zechao Li, Haofeng Zhang","doi":"10.1007/s11263-025-02382-x","DOIUrl":null,"url":null,"abstract":"<p>The incorporation of language to enable model extension into unseen domains has gained significant interest in recent years. Previous methods commonly utilize semantically guided distributional shifts in training features to achieve this. Nevertheless, the intrinsic modal disparities between language and pixel-level images frequently result in a divergence within the feature manifold when employing semantic guidelines to augment features. This paper presents the <i>IMbuing, Enrichment, and Calibration (IMEC)</i> strategy as a concise solution for these issues. Unlike previous approaches, IMEC reverses the target domain style mining process to ensure the retention of semantic content within a more structured framework. Guided by global semantics, we conditionally generate style vectors for imbuing into visual features. After which IMEC introduces minor perturbations to disperse these vectors using local semantics and selectively calibrates semantic content in features through a dimensional activation strategy. IMEC integrates semantic abstract knowledge with detail image content, bridging the gap between synthetic and real samples in the target domain and mitigating content collapse resulting from semantic-visual disparities. Our model is evaluated on semantic segmentation, object detection, and image classification tasks across challenging datasets, demonstrating superior performance over existing methods in both the target and source domains. The code for IMEC is available at https://github.com/LanchJL/IMEC-ZSDE.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"65 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02382-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of language to enable model extension into unseen domains has gained significant interest in recent years. Previous methods commonly utilize semantically guided distributional shifts in training features to achieve this. Nevertheless, the intrinsic modal disparities between language and pixel-level images frequently result in a divergence within the feature manifold when employing semantic guidelines to augment features. This paper presents the IMbuing, Enrichment, and Calibration (IMEC) strategy as a concise solution for these issues. Unlike previous approaches, IMEC reverses the target domain style mining process to ensure the retention of semantic content within a more structured framework. Guided by global semantics, we conditionally generate style vectors for imbuing into visual features. After which IMEC introduces minor perturbations to disperse these vectors using local semantics and selectively calibrates semantic content in features through a dimensional activation strategy. IMEC integrates semantic abstract knowledge with detail image content, bridging the gap between synthetic and real samples in the target domain and mitigating content collapse resulting from semantic-visual disparities. Our model is evaluated on semantic segmentation, object detection, and image classification tasks across challenging datasets, demonstrating superior performance over existing methods in both the target and source domains. The code for IMEC is available at https://github.com/LanchJL/IMEC-ZSDE.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.