TROPOMI Satellite Data Reshape NO2 Air Pollution Land-Use Regression Modeling Capabilities in the United States.

ACS ES&T Air Pub Date : 2025-01-22 eCollection Date: 2025-02-14 DOI:10.1021/acsestair.4c00153
M Omar Nawaz, Daniel L Goldberg, Gaige H Kerr, Susan C Anenberg
{"title":"TROPOMI Satellite Data Reshape NO<sub>2</sub> Air Pollution Land-Use Regression Modeling Capabilities in the United States.","authors":"M Omar Nawaz, Daniel L Goldberg, Gaige H Kerr, Susan C Anenberg","doi":"10.1021/acsestair.4c00153","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen dioxide (NO<sub>2</sub>) pollution is associated with adverse health effects, but its spatial variability between ground monitors is poorly characterized. NO<sub>2</sub> column observations from the Tropospheric Monitoring Instrument (TROPOMI) have unprecedented spatial resolution and high accuracy over the globe. Land-use regression (LUR) models predict surface-level NO<sub>2</sub> with relevance for epidemiological and environmental justice studies. We use TROPOMI NO<sub>2</sub> columns in a land use regression (LUR) model to improve surface NO<sub>2</sub> concentration estimates over the United States. The TROPOMI LUR predictions have improved correlation with ground monitors (Adj. <i>R</i> <sup>2</sup> = 0.72) and bias (Mean Bias, MB = 14.2%) compared with an existing LUR using less granular NO<sub>2</sub> data from a legacy satellite instrument (Adj. <i>R</i> <sup>2</sup> = 0.54 and MB = 49%; for North America). Removing TROPOMI NO<sub>2</sub> from the LUR decreased <i>R</i> <sup>2</sup> by 29.1%, 8.1 times the impact of removing road system information. These findings reveal that novel Earth observing satellites can enhance surface NO<sub>2</sub> surveillance by capturing pollution variation between monitors without relying heavily on other data sources.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 2","pages":"187-200"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestair.4c00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen dioxide (NO2) pollution is associated with adverse health effects, but its spatial variability between ground monitors is poorly characterized. NO2 column observations from the Tropospheric Monitoring Instrument (TROPOMI) have unprecedented spatial resolution and high accuracy over the globe. Land-use regression (LUR) models predict surface-level NO2 with relevance for epidemiological and environmental justice studies. We use TROPOMI NO2 columns in a land use regression (LUR) model to improve surface NO2 concentration estimates over the United States. The TROPOMI LUR predictions have improved correlation with ground monitors (Adj. R 2 = 0.72) and bias (Mean Bias, MB = 14.2%) compared with an existing LUR using less granular NO2 data from a legacy satellite instrument (Adj. R 2 = 0.54 and MB = 49%; for North America). Removing TROPOMI NO2 from the LUR decreased R 2 by 29.1%, 8.1 times the impact of removing road system information. These findings reveal that novel Earth observing satellites can enhance surface NO2 surveillance by capturing pollution variation between monitors without relying heavily on other data sources.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信