Ultrasound-based radiomics and clinical factors-based nomogram for early intracranial hypertension detection in patients with decompressive craniotomy.

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Frontiers in medical technology Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.3389/fmedt.2025.1485244
Zunfeng Fu, Lin Peng, Laicai Guo, Chao Qin, Yanhong Yu, Jiajun Zhang, Yan Liu
{"title":"Ultrasound-based radiomics and clinical factors-based nomogram for early intracranial hypertension detection in patients with decompressive craniotomy.","authors":"Zunfeng Fu, Lin Peng, Laicai Guo, Chao Qin, Yanhong Yu, Jiajun Zhang, Yan Liu","doi":"10.3389/fmedt.2025.1485244","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to develop and validate a nomogram that combines traditional ultrasound radiomics features with clinical parameters to assess early intracranial hypertension (IH) following primary decompressive craniectomy (DC) in patients with severe traumatic brain injury (TBI). The study incorporates the Shapley Additive Explanations (SHAP) method to interpret the radiomics model.</p><p><strong>Methods: </strong>This study included 199 patients with severe TBI (training cohort: <i>n</i> = 159; testing cohort: <i>n</i> = 40). Postoperative ultrasound images of the optic nerve sheath (ONS) were obtained at 6 and 18 h after DC. Based on invasive intracranial pressure (ICPi) measurements, patients were grouped according to threshold values of 15 mmHg and 20 mmHg. Radiomics features were extracted from ONS images, and feature selection methods were applied to construct predictive models using logistic regression (LR), support vector machine (SVM), random forest (RF), and K-Nearest Neighbors (KNN). Clinical-ultrasound variables were incorporated into the model through univariate and multivariate logistic regression. A combined nomogram was developed by integrating radiomics features with clinical-ultrasound variables, and its diagnostic performance was evaluated using Receiver Operating Characteristic (ROC) curve analysis and decision curve analysis (DCA). The SHAP method was adopted to explain the prediction models.</p><p><strong>Results: </strong>Among the machine learning models, the LR model demonstrated superior predictive efficiency and robustness at threshold values of 15 mmHg and 20 mmHg. At a threshold of 20 mmHg, the AUC values for the training and testing cohorts were 0.803 and 0.735 for the clinical model, 0.908 and 0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram model, respectively. Similarly, at a threshold of 15 mmHg, the AUC values were consistent across models: 0.803 and 0.735 for the clinical model, 0.908 and 0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram model. Notably, the nomogram model outperformed the clinical model. Decision curve analysis (DCA) further confirmed a higher net benefit for predicting intracranial hypertension across all models.</p><p><strong>Conclusion: </strong>The nomogram model, which integrates both clinical-semantic and radiomics features, demonstrated strong performance in predicting intracranial hypertension across different threshold values. It shows promise for enhancing non-invasive ICP monitoring and supporting individualized therapeutic strategies.</p>","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"7 ","pages":"1485244"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2025.1485244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to develop and validate a nomogram that combines traditional ultrasound radiomics features with clinical parameters to assess early intracranial hypertension (IH) following primary decompressive craniectomy (DC) in patients with severe traumatic brain injury (TBI). The study incorporates the Shapley Additive Explanations (SHAP) method to interpret the radiomics model.

Methods: This study included 199 patients with severe TBI (training cohort: n = 159; testing cohort: n = 40). Postoperative ultrasound images of the optic nerve sheath (ONS) were obtained at 6 and 18 h after DC. Based on invasive intracranial pressure (ICPi) measurements, patients were grouped according to threshold values of 15 mmHg and 20 mmHg. Radiomics features were extracted from ONS images, and feature selection methods were applied to construct predictive models using logistic regression (LR), support vector machine (SVM), random forest (RF), and K-Nearest Neighbors (KNN). Clinical-ultrasound variables were incorporated into the model through univariate and multivariate logistic regression. A combined nomogram was developed by integrating radiomics features with clinical-ultrasound variables, and its diagnostic performance was evaluated using Receiver Operating Characteristic (ROC) curve analysis and decision curve analysis (DCA). The SHAP method was adopted to explain the prediction models.

Results: Among the machine learning models, the LR model demonstrated superior predictive efficiency and robustness at threshold values of 15 mmHg and 20 mmHg. At a threshold of 20 mmHg, the AUC values for the training and testing cohorts were 0.803 and 0.735 for the clinical model, 0.908 and 0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram model, respectively. Similarly, at a threshold of 15 mmHg, the AUC values were consistent across models: 0.803 and 0.735 for the clinical model, 0.908 and 0.891 for the radiomics model, and 0.918 and 0.902 for the nomogram model. Notably, the nomogram model outperformed the clinical model. Decision curve analysis (DCA) further confirmed a higher net benefit for predicting intracranial hypertension across all models.

Conclusion: The nomogram model, which integrates both clinical-semantic and radiomics features, demonstrated strong performance in predicting intracranial hypertension across different threshold values. It shows promise for enhancing non-invasive ICP monitoring and supporting individualized therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信