An altruistic resource-sharing mechanism for synchronization: The energy-speed-accuracy tradeoff.

ArXiv Pub Date : 2025-02-04
Dongliang Zhang, Yuansheng Cao, Qi Ouyang, Yuhai Tu
{"title":"An altruistic resource-sharing mechanism for synchronization: The energy-speed-accuracy tradeoff.","authors":"Dongliang Zhang, Yuansheng Cao, Qi Ouyang, Yuhai Tu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sharing (ARS) mechanism wherein resources are needed for individual agent to advance but a more advanced agent has a lower competence to obtain resources. We show that while differential competence in ARS mechanism provides a negative feedback leading to synchronization it also breaks detailed balance and thus requires additional energy dissipation besides the cost of driving individual agents. By solving the model analytically, our study reveals a general tradeoff relation between the total energy dissipation rate and the two key performance measures of the system: average speed and synchronization accuracy. For a fixed dissipation rate, there is a distinct speed-accuracy Pareto front traversed by the scarcity of resources: scarcer resources lead to slower speed but more accurate synchronization. Increasing energy dissipation eases this tradeoff by pushing the speed-accuracy Pareto front outwards. The connections of our work to realistic biological systems such as the KaiABC system in cyanobacterial circadian clock and other theoretical results based on thermodynamic uncertainty relation are also discussed.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sharing (ARS) mechanism wherein resources are needed for individual agent to advance but a more advanced agent has a lower competence to obtain resources. We show that while differential competence in ARS mechanism provides a negative feedback leading to synchronization it also breaks detailed balance and thus requires additional energy dissipation besides the cost of driving individual agents. By solving the model analytically, our study reveals a general tradeoff relation between the total energy dissipation rate and the two key performance measures of the system: average speed and synchronization accuracy. For a fixed dissipation rate, there is a distinct speed-accuracy Pareto front traversed by the scarcity of resources: scarcer resources lead to slower speed but more accurate synchronization. Increasing energy dissipation eases this tradeoff by pushing the speed-accuracy Pareto front outwards. The connections of our work to realistic biological systems such as the KaiABC system in cyanobacterial circadian clock and other theoretical results based on thermodynamic uncertainty relation are also discussed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信