Anne Susemihl, Norman Geist, Piotr Grabarczyk, Christian A Schmidt, Mihaela Delcea, Lukas Schulig
{"title":"Double the Double: Revisiting BCL11B's Multimerization.","authors":"Anne Susemihl, Norman Geist, Piotr Grabarczyk, Christian A Schmidt, Mihaela Delcea, Lukas Schulig","doi":"10.1002/prot.26811","DOIUrl":null,"url":null,"abstract":"<p><p>The transcription factor B Cell Lymphoma/Leukemia 11B (BCL11B) exerts a bi-directional function in cancer, with its role as an emerging therapeutic target in cancer treatment being particularly intriguing. BCL11B knockouts in cultured T cells revealed the acquisition of properties characteristic of natural killer cells, hinting at its importance in innate versus adaptive immune regulation. Our previous studies using Förster Resonance Energy Transfer-assisted Fluorescence-Activated Cell Sorting and Hybrid Solvent Replica-Exchange Simulations indicated that BCL11B forms dimers, with this being a prerequisite for its activity. However, size exclusion chromatography and crosslinking experiments have challenged this view, suggesting that BCL11B forms tetramers instead. An atypical CCHC zinc finger motif within the N-terminal region of the protein mediates multimerization and a novel 3D structure is presented based on extensive replica-exchange simulations in strong agreement with experimental data. The physiological relevance of multimer formation of this zinc finger protein has been demonstrated previously. Therefore, understanding the nature of BCL11B's multimerization could potentially enhance our ability to target this protein effectively, hopefully paving the way for novel BCL11B-targeted therapies.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"1205-1211"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26811","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transcription factor B Cell Lymphoma/Leukemia 11B (BCL11B) exerts a bi-directional function in cancer, with its role as an emerging therapeutic target in cancer treatment being particularly intriguing. BCL11B knockouts in cultured T cells revealed the acquisition of properties characteristic of natural killer cells, hinting at its importance in innate versus adaptive immune regulation. Our previous studies using Förster Resonance Energy Transfer-assisted Fluorescence-Activated Cell Sorting and Hybrid Solvent Replica-Exchange Simulations indicated that BCL11B forms dimers, with this being a prerequisite for its activity. However, size exclusion chromatography and crosslinking experiments have challenged this view, suggesting that BCL11B forms tetramers instead. An atypical CCHC zinc finger motif within the N-terminal region of the protein mediates multimerization and a novel 3D structure is presented based on extensive replica-exchange simulations in strong agreement with experimental data. The physiological relevance of multimer formation of this zinc finger protein has been demonstrated previously. Therefore, understanding the nature of BCL11B's multimerization could potentially enhance our ability to target this protein effectively, hopefully paving the way for novel BCL11B-targeted therapies.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.