[Surface-Enhanced Raman Scattering to Improve the Sensitivity of the MTT Assay].

Q3 Medicine
V A Mushenkov, D A Lukyanov, N F Meshcheryakova, V I Kukushkin, E G Zavyalova
{"title":"[Surface-Enhanced Raman Scattering to Improve the Sensitivity of the MTT Assay].","authors":"V A Mushenkov, D A Lukyanov, N F Meshcheryakova, V I Kukushkin, E G Zavyalova","doi":"10.31857/S0026898424060134, EDN: IAFGAM","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, empirical therapy regimens are often used in the treatment of infectious diseases that are not based on data on pathogen resistance. One of the main reasons for the unjustified prescription of antibacterial drugs is the lack of rapid and at the same time universal methods of determining the antibiotic resistance of the pathogen. The most widely used culture techniques, such as the microdilution method, require a long time to generate the necessary number of bacterial cells. Less time-consuming methods of resistance assessment (genomic or proteomic) are based on the determination of specific markers (resistance genes, overexpression of certain proteins, etc.); in this case, the specific protocol is most often applicable to a narrow number of both microorganism strains and antibiotics. Previously, we demonstrated the possibility of using Raman spectroscopy (RS) technology for quantitative determination of the product of bacterial cell activity in the MTT assay, formazan, directly in the cell suspension. The absence of the formazan isolation step simplifies the assay and increases its accuracy. The analysis time did not exceed 2 h while maintaining the versatility of the MTT assay itself. Limitations of the developed protocol for RS detection of the MTT assay results include a high sensitivity threshold of 10^(7) CFU/mL for the bacterial cell concentration, so a preliminary stage of cultivation is necessary for samples with a low bacterial content. Here, we propose a method to increase the sensitivity of formazan determination by utilizing the effect of surface-enhanced Raman scattering (SERS) on gold nanoparticles. As a result of this study, the optimal conditions for SERS analysis of formazan in both solution and suspension of Escherichia coli cells are selected. Formazan signal amplification due to the use of SERS on gold nanoparticles instead of RS allowed us to reduce the sensitivity threshold for the number of bacterial cells in the sample by at least 30 times, up to 3 x 10^(5) CFU/mL. This sensitivity is not the limit of the SERS technology capabilities because the introduction of other types of nanoparticles (more optimal in shape, size, concentration, etc.) into the experiment will allow one to achieve even higher signal amplification.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 6","pages":"1031-1040"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424060134, EDN: IAFGAM","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, empirical therapy regimens are often used in the treatment of infectious diseases that are not based on data on pathogen resistance. One of the main reasons for the unjustified prescription of antibacterial drugs is the lack of rapid and at the same time universal methods of determining the antibiotic resistance of the pathogen. The most widely used culture techniques, such as the microdilution method, require a long time to generate the necessary number of bacterial cells. Less time-consuming methods of resistance assessment (genomic or proteomic) are based on the determination of specific markers (resistance genes, overexpression of certain proteins, etc.); in this case, the specific protocol is most often applicable to a narrow number of both microorganism strains and antibiotics. Previously, we demonstrated the possibility of using Raman spectroscopy (RS) technology for quantitative determination of the product of bacterial cell activity in the MTT assay, formazan, directly in the cell suspension. The absence of the formazan isolation step simplifies the assay and increases its accuracy. The analysis time did not exceed 2 h while maintaining the versatility of the MTT assay itself. Limitations of the developed protocol for RS detection of the MTT assay results include a high sensitivity threshold of 10^(7) CFU/mL for the bacterial cell concentration, so a preliminary stage of cultivation is necessary for samples with a low bacterial content. Here, we propose a method to increase the sensitivity of formazan determination by utilizing the effect of surface-enhanced Raman scattering (SERS) on gold nanoparticles. As a result of this study, the optimal conditions for SERS analysis of formazan in both solution and suspension of Escherichia coli cells are selected. Formazan signal amplification due to the use of SERS on gold nanoparticles instead of RS allowed us to reduce the sensitivity threshold for the number of bacterial cells in the sample by at least 30 times, up to 3 x 10^(5) CFU/mL. This sensitivity is not the limit of the SERS technology capabilities because the introduction of other types of nanoparticles (more optimal in shape, size, concentration, etc.) into the experiment will allow one to achieve even higher signal amplification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信