[Antibiotic Resistance Genes in Cattle Gut Microbiota: Influence of Housing Conditions].

Q3 Medicine
Sh A Begmatov, A V Beletsky, A L Rakitin, A P Lukina, L O Sokolyanskaya, A V Rakitin, L B Glukhova, A V Mardanov, O V Karnachuk, N V Ravin
{"title":"[Antibiotic Resistance Genes in Cattle Gut Microbiota: Influence of Housing Conditions].","authors":"Sh A Begmatov, A V Beletsky, A L Rakitin, A P Lukina, L O Sokolyanskaya, A V Rakitin, L B Glukhova, A V Mardanov, O V Karnachuk, N V Ravin","doi":"10.31857/S0026898424060105, EDN: IALWAS","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to antimicrobial drugs is an urgent problem not only in public health, but also in animal husbandry. The widespread use of antimicrobials in feed additives is one of the main reasons for the rapid spread of antibiotic resistance in the microbiota of the gastrointestinal tract of farm animals. To characterize antibiotic resistance genes (resistome), we performed metagenomic analysis of the feces of 24 cattle from different regions of Russia, including cows of different breeds and yaks. Animals differed in the type of housing: year-round on pastures or in barns of conventional farms, with consumption of feed additives. Although genes of resistance to aminoglycosides, β-lactams, glycopeptides, MLS antibiotics (macrolides, lincosamides, and streptogramins), phenicols, and tetracyclines were detected in samples from both groups of animals, the content of the resistome in the fecal microbiome of stall-bred cattle was about ten times higher than in animals kept on pastures. The resistome of stall cattle was dominated by β-lactamases and tetracycline resistance genes, the content of which in the microbiome was 24 and 60 times higher, respectively, than in animals kept on pastures. Apparently, the spread of resistance to β-lactams and tetracyclines in stall cattle reflects the active use of these antibiotics in livestock production. Metagenomic analysis of livestock feces can be used to quantify antibiotic resistance genes for the purpose of monitoring antimicrobial drugs used in animal husbandry.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 6","pages":"996-1006"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424060105, EDN: IALWAS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance to antimicrobial drugs is an urgent problem not only in public health, but also in animal husbandry. The widespread use of antimicrobials in feed additives is one of the main reasons for the rapid spread of antibiotic resistance in the microbiota of the gastrointestinal tract of farm animals. To characterize antibiotic resistance genes (resistome), we performed metagenomic analysis of the feces of 24 cattle from different regions of Russia, including cows of different breeds and yaks. Animals differed in the type of housing: year-round on pastures or in barns of conventional farms, with consumption of feed additives. Although genes of resistance to aminoglycosides, β-lactams, glycopeptides, MLS antibiotics (macrolides, lincosamides, and streptogramins), phenicols, and tetracyclines were detected in samples from both groups of animals, the content of the resistome in the fecal microbiome of stall-bred cattle was about ten times higher than in animals kept on pastures. The resistome of stall cattle was dominated by β-lactamases and tetracycline resistance genes, the content of which in the microbiome was 24 and 60 times higher, respectively, than in animals kept on pastures. Apparently, the spread of resistance to β-lactams and tetracyclines in stall cattle reflects the active use of these antibiotics in livestock production. Metagenomic analysis of livestock feces can be used to quantify antibiotic resistance genes for the purpose of monitoring antimicrobial drugs used in animal husbandry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信