[Inactivation of Type 3 Fimbriae Increases Adhesion of Klebsiella oxytoca to Lung Epithelial Cells].

Q3 Medicine
A G Giliazeva, A M Mardanova
{"title":"[Inactivation of Type 3 Fimbriae Increases Adhesion of Klebsiella oxytoca to Lung Epithelial Cells].","authors":"A G Giliazeva, A M Mardanova","doi":"10.31857/S0026898424050084, EDN: HUMBXW","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella oxytoca is a causative agent of various community-acquired and nosocomial infections, including urinary tract infections, nosocomial pneumonia, antibiotic-associated diarrhea, etc. However, the virulence factors of the species are still incompletely understood. The adhesive potential of the urological isolate K. oxytoca NK-1 was characterized using several substrates. The strain was found to efficiently adhere to epithelial cell lines, glycosylated and nonglycosylated proteins, and polystyrene and to induce yeast cell agglutination, indicating the presence of type 1 and type 3 fimbriae, which are organelles that facilitate adhesion of enterobacteria to a wide range of substrates. Both type 1 and type 3 fimbrial operons were identified in the strain genome, the latter occurring in two copies. Mutants with inactivated fimbrial genes were constructed. Inactivation of type 1 fimbrial genes did not affect bacterial adhesion. Inactivation of type 3 fimbrial genes increased adhesion of K. oxytoca NK-1 to lung epithelial cells (line H1299), and mannose was shown to serve as an additional inducer of higher adhesion. Adhesion of the mutant to other substrates was not affected. The findings suggested a multifactorial nature for the K. oxytoca adhesive apparatus and the possibility of compensatory expression or overexpression of genes for alternative adhesins in the absence of type 1 and/or 3 fimbriae.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 5","pages":"784-796"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424050084, EDN: HUMBXW","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Klebsiella oxytoca is a causative agent of various community-acquired and nosocomial infections, including urinary tract infections, nosocomial pneumonia, antibiotic-associated diarrhea, etc. However, the virulence factors of the species are still incompletely understood. The adhesive potential of the urological isolate K. oxytoca NK-1 was characterized using several substrates. The strain was found to efficiently adhere to epithelial cell lines, glycosylated and nonglycosylated proteins, and polystyrene and to induce yeast cell agglutination, indicating the presence of type 1 and type 3 fimbriae, which are organelles that facilitate adhesion of enterobacteria to a wide range of substrates. Both type 1 and type 3 fimbrial operons were identified in the strain genome, the latter occurring in two copies. Mutants with inactivated fimbrial genes were constructed. Inactivation of type 1 fimbrial genes did not affect bacterial adhesion. Inactivation of type 3 fimbrial genes increased adhesion of K. oxytoca NK-1 to lung epithelial cells (line H1299), and mannose was shown to serve as an additional inducer of higher adhesion. Adhesion of the mutant to other substrates was not affected. The findings suggested a multifactorial nature for the K. oxytoca adhesive apparatus and the possibility of compensatory expression or overexpression of genes for alternative adhesins in the absence of type 1 and/or 3 fimbriae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信