{"title":"Transforming orthodontic retention: potential of 3D printing and biocompatible material characteristics.","authors":"Anmol Sharma, Pushpendra S Bharti","doi":"10.1080/03091902.2025.2466198","DOIUrl":null,"url":null,"abstract":"<p><p>This review article delves into the cutting-edge realm of 3D printing and its impact on the fabrication of customised orthodontic retainers, which is an essential utility in the prevention of relapse post orthodontic treatment. This review evaluates the use of biocompatible materials and provides insight into future perspectives and improvements in this field. It highlights the potential of data collecting method and 3D printing to improve orthodontic retainers' fabrication and emphasises the importance of using biocompatible materials for patient safety and efficacy. It also explains cytotoxic qualities of retainer fabrication materials, which are vital for safeguarding the oral health of the patient. The evaluation procedure enables the early diagnosis and correction of any potential difficulties, such as maladjustment or inappropriate fit, allowing for a more effective treatment. It illustrates the breakthroughs and innovations in the field of orthodontics, the advantages of 3D printing over conventional methods, as well as the advantages and disadvantages of various fabrication method. Incorporating 3D printing and review into the production of orthodontic retainers enhances the overall effectiveness and efficiency of patient treatment.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"8-33"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2466198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This review article delves into the cutting-edge realm of 3D printing and its impact on the fabrication of customised orthodontic retainers, which is an essential utility in the prevention of relapse post orthodontic treatment. This review evaluates the use of biocompatible materials and provides insight into future perspectives and improvements in this field. It highlights the potential of data collecting method and 3D printing to improve orthodontic retainers' fabrication and emphasises the importance of using biocompatible materials for patient safety and efficacy. It also explains cytotoxic qualities of retainer fabrication materials, which are vital for safeguarding the oral health of the patient. The evaluation procedure enables the early diagnosis and correction of any potential difficulties, such as maladjustment or inappropriate fit, allowing for a more effective treatment. It illustrates the breakthroughs and innovations in the field of orthodontics, the advantages of 3D printing over conventional methods, as well as the advantages and disadvantages of various fabrication method. Incorporating 3D printing and review into the production of orthodontic retainers enhances the overall effectiveness and efficiency of patient treatment.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.