Will Dumm, Duncan Ralph, William DeWitt, Ashni Vora, Tatsuya Araki, Gabriel D Victora, Frederick A Matsen Iv
{"title":"Leveraging DAGs to improve context-sensitive and abundance-aware tree estimation.","authors":"Will Dumm, Duncan Ralph, William DeWitt, Ashni Vora, Tatsuya Araki, Gabriel D Victora, Frederick A Matsen Iv","doi":"10.1098/rstb.2023.0315","DOIUrl":null,"url":null,"abstract":"<p><p>The phylogenetic inference package GCtree uses abundance of sampled sequences to improve the performance of parsimony-based inference, using a branching process model. Our previous work showed that GCtree performs competitively on B-cell receptor data, compared with other similar tools. In this article, we describe recent enhancements to GCtree, including an efficient tree storage data structure that discovers additional diversity of parsimonious trees with negligible additional computational cost. We also describe a suite of new objective functions that can be used to rank these trees, including a Poisson context likelihood function that models sequence evolution in a context-sensitive way. We validate these additions to GCtree with simulated B-cell receptor data, and benchmark performance against other phylogenetic inference tools.This article is part of the theme issue '\"A mathematical theory of evolution\": phylogenetic models dating back 100 years'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1919","pages":"20230315"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0315","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phylogenetic inference package GCtree uses abundance of sampled sequences to improve the performance of parsimony-based inference, using a branching process model. Our previous work showed that GCtree performs competitively on B-cell receptor data, compared with other similar tools. In this article, we describe recent enhancements to GCtree, including an efficient tree storage data structure that discovers additional diversity of parsimonious trees with negligible additional computational cost. We also describe a suite of new objective functions that can be used to rank these trees, including a Poisson context likelihood function that models sequence evolution in a context-sensitive way. We validate these additions to GCtree with simulated B-cell receptor data, and benchmark performance against other phylogenetic inference tools.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.