Revisiting huntingtin activity and localization signals in the context of protein structure.

IF 2.1 Q3 NEUROSCIENCES
Journal of Huntington's disease Pub Date : 2024-11-01 Epub Date: 2024-11-10 DOI:10.1177/18796397241295303
Ray Truant, Rachel J Harding, Kaitlyn Neuman, Tamara Maiuri
{"title":"Revisiting huntingtin activity and localization signals in the context of protein structure.","authors":"Ray Truant, Rachel J Harding, Kaitlyn Neuman, Tamara Maiuri","doi":"10.1177/18796397241295303","DOIUrl":null,"url":null,"abstract":"<p><p>Protein localization signals and activity motifs have been defined within huntingtin since 2003. Advances in technology in protein structure determination by cryo-electron microscopy (EM) have led to 2.6 Å resolution structures of huntingtin and HAP40 for the majority of the protein, although structure of the amino terminus with the polyglutamine expansion remains elusive in the context of full-length huntingtin. Recent advances in protein modeling using neural network algorithms trained on a database of known protein structures has resulted in structure predictions that are useful for researchers but need experimental validation. Here, we use both structures solved by cryo-EM as well as modeling centered around experimental structural data to retrospectively revisit huntingtin protein localization signals identified prior to the cryo-EM and AI-enabled structural revolutions. We interrogate these models as well as put forward testable hypotheses of allosteric changes in huntingtin and how they could be affected by polyglutamine expansion. We also extended this methodology to another polyglutamine disease protein, ataxin-1, expanded in Spinocerebellar Ataxia Type 1 (SCA1).</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":"13 4","pages":"419-430"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Huntington's disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18796397241295303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Protein localization signals and activity motifs have been defined within huntingtin since 2003. Advances in technology in protein structure determination by cryo-electron microscopy (EM) have led to 2.6 Å resolution structures of huntingtin and HAP40 for the majority of the protein, although structure of the amino terminus with the polyglutamine expansion remains elusive in the context of full-length huntingtin. Recent advances in protein modeling using neural network algorithms trained on a database of known protein structures has resulted in structure predictions that are useful for researchers but need experimental validation. Here, we use both structures solved by cryo-EM as well as modeling centered around experimental structural data to retrospectively revisit huntingtin protein localization signals identified prior to the cryo-EM and AI-enabled structural revolutions. We interrogate these models as well as put forward testable hypotheses of allosteric changes in huntingtin and how they could be affected by polyglutamine expansion. We also extended this methodology to another polyglutamine disease protein, ataxin-1, expanded in Spinocerebellar Ataxia Type 1 (SCA1).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信