Dan Nguyen, Sarah Palmquist, Ken-Pin Hwang, Jingfei Ma, Usama Salem, Jia Sun, Xinzeng Wang, Jong Bum Son, Randy Ernst, Peng Wei, Harmeet Kaur, Nir Stanietzky
{"title":"T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study.","authors":"Dan Nguyen, Sarah Palmquist, Ken-Pin Hwang, Jingfei Ma, Usama Salem, Jia Sun, Xinzeng Wang, Jong Bum Son, Randy Ernst, Peng Wei, Harmeet Kaur, Nir Stanietzky","doi":"10.1002/acm2.70031","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare image quality and clinical utility of a T2-weighted (T2W) 3-dimensional (3D) fast spin echo (FSE) sequence using deep learning reconstruction (DLR) versus conventional reconstruction for rectal magnetic resonance imaging (MRI).</p><p><strong>Methods: </strong>The study included 50 patients with rectal cancer who underwent rectal MRI consecutively between July 7, 2020 and January 20, 2021 using a T2W 3D FSE sequence with DLR and conventional reconstruction. Three radiologists reviewed the two sets of images, scoring overall SNR, motion artifacts, and overall image quality on a 3-point scale and indicating clinical preference for DLR or conventional reconstruction based on those three criteria as well as image characterization of bowel wall layer definition, tumor invasion of muscularis propria, residual disease, fibrosis, nodal margin, and extramural venous invasion.</p><p><strong>Results: </strong>Image quality was rated as moderate or good for both DLR and conventional reconstruction for most cases. DLR was preferred over conventional reconstruction in all of the categories except for bowel wall layer definition.</p><p><strong>Conclusion: </strong>Both conventional reconstruction and DLR provide acceptable image quality for T2W 3D FSE imaging of rectal cancer. DLR was clinically preferred over conventional reconstruction in almost all categories.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70031"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To compare image quality and clinical utility of a T2-weighted (T2W) 3-dimensional (3D) fast spin echo (FSE) sequence using deep learning reconstruction (DLR) versus conventional reconstruction for rectal magnetic resonance imaging (MRI).
Methods: The study included 50 patients with rectal cancer who underwent rectal MRI consecutively between July 7, 2020 and January 20, 2021 using a T2W 3D FSE sequence with DLR and conventional reconstruction. Three radiologists reviewed the two sets of images, scoring overall SNR, motion artifacts, and overall image quality on a 3-point scale and indicating clinical preference for DLR or conventional reconstruction based on those three criteria as well as image characterization of bowel wall layer definition, tumor invasion of muscularis propria, residual disease, fibrosis, nodal margin, and extramural venous invasion.
Results: Image quality was rated as moderate or good for both DLR and conventional reconstruction for most cases. DLR was preferred over conventional reconstruction in all of the categories except for bowel wall layer definition.
Conclusion: Both conventional reconstruction and DLR provide acceptable image quality for T2W 3D FSE imaging of rectal cancer. DLR was clinically preferred over conventional reconstruction in almost all categories.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic