Cell wall glycosyltransferase of Streptococcus mutans impacts its dissemination to murine organs.

IF 2.9 3区 医学 Q3 IMMUNOLOGY
Tomomi Hashizume-Takizawa, Taiki Ando, Ayaka Urakawa, Kazuhiro Aoki, Hedenobu Senpuku
{"title":"Cell wall glycosyltransferase of <i>Streptococcus mutans</i> impacts its dissemination to murine organs.","authors":"Tomomi Hashizume-Takizawa, Taiki Ando, Ayaka Urakawa, Kazuhiro Aoki, Hedenobu Senpuku","doi":"10.1128/iai.00097-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus mutans</i>, a cariogenic bacterium in humans, is associated with systemic disorders. Its cariogenic factors include glucosyltransferases (GTFs) and the glycosyltransferase rhamnose-glucose polysaccharide I (RgpI), which is involved in cell wall synthesis. However, the potential roles of these enzymes in systemic disorders remain unclear. We constructed a luciferase-tagged <i>S. mutans</i> UA159 mutant strain that lacked <i>rgpI</i> to explore the involvement of this enzyme in the systemic pathogenicity of <i>S. mutans</i>. We also employed the luciferase-tagged <i>S. mutans</i> UA159 variant, which exhibited reduced GTF production and therefore had a low glucan synthesis ability. We intravenously inoculated these luciferase-tagged mutants and parent strains into 12-week-old male BALB/c mice to evaluate their distribution to organs. Strong luminescence was noted in the spleen and kidneys, indicating that <i>S. mutans</i> was disseminated to these organs. Several organs collected from mice inoculated with the luciferase-tagged parent strain emitted a signal, and inflammatory cytokine production was detected in the blood. The luminescence intensity was lower in the kidneys of mice challenged with the mutant strain, which has a low glucan synthesis ability. Conversely, challenge with the <i>rgpI</i> deletion mutant strain resulted in the lowest number of luminescent organs, with a lower intensity and attenuated inflammation. Furthermore, all the mice inoculated with the <i>rgpI</i> deletion mutant strain survived, whereas not all the mice inoculated with the parent strain survived. Collectively, these results suggest that RgpI is involved in the systemic pathogenicity of <i>S. mutans</i> UA159.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0009724"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00097-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptococcus mutans, a cariogenic bacterium in humans, is associated with systemic disorders. Its cariogenic factors include glucosyltransferases (GTFs) and the glycosyltransferase rhamnose-glucose polysaccharide I (RgpI), which is involved in cell wall synthesis. However, the potential roles of these enzymes in systemic disorders remain unclear. We constructed a luciferase-tagged S. mutans UA159 mutant strain that lacked rgpI to explore the involvement of this enzyme in the systemic pathogenicity of S. mutans. We also employed the luciferase-tagged S. mutans UA159 variant, which exhibited reduced GTF production and therefore had a low glucan synthesis ability. We intravenously inoculated these luciferase-tagged mutants and parent strains into 12-week-old male BALB/c mice to evaluate their distribution to organs. Strong luminescence was noted in the spleen and kidneys, indicating that S. mutans was disseminated to these organs. Several organs collected from mice inoculated with the luciferase-tagged parent strain emitted a signal, and inflammatory cytokine production was detected in the blood. The luminescence intensity was lower in the kidneys of mice challenged with the mutant strain, which has a low glucan synthesis ability. Conversely, challenge with the rgpI deletion mutant strain resulted in the lowest number of luminescent organs, with a lower intensity and attenuated inflammation. Furthermore, all the mice inoculated with the rgpI deletion mutant strain survived, whereas not all the mice inoculated with the parent strain survived. Collectively, these results suggest that RgpI is involved in the systemic pathogenicity of S. mutans UA159.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信