AAV1.NT3 gene therapy mitigates the severity of autoimmune encephalomyelitis in the mouse model for multiple sclerosis.

IF 4.6 3区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lingying Tong, Burcak Ozes, Kyle Moss, Morgan Myers, Zayed Attia, Tatyana A Vetter, Bruce D Trapp, Zarife Sahenk
{"title":"AAV1.NT3 gene therapy mitigates the severity of autoimmune encephalomyelitis in the mouse model for multiple sclerosis.","authors":"Lingying Tong, Burcak Ozes, Kyle Moss, Morgan Myers, Zayed Attia, Tatyana A Vetter, Bruce D Trapp, Zarife Sahenk","doi":"10.1038/s41434-025-00518-9","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an immune-mediated chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than 2.5 million patients worldwide. Chronic demyelination in the CNS has an important role in perpetuating axonal loss and increases difficulty in promoting remyelination. Therefore, regenerative, and neuroprotective strategies are essential to overcome this impediment to rescue axonal integrity and function. Neurotrophin 3 (NT-3) has immunomodulatory and anti-inflammatory properties, in addition to its well-recognized function in nervous system development, myelination, neuroprotection, and regeneration. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of experimental autoimmune encephalomyelitis (EAE) mice, the chronic relapsing mouse model of MS, at 3 weeks post EAE induction. Measurable NT-3 levels were found in serum at 7-weeks post gene delivery. The treated cohort showed improved clinical scores and performed significantly better in rotarod, and grip strength tests compared to their untreated counterparts. Histopathologic studies showed improved remyelination and axon protection. These data correlated with reduced expression of the pro-inflammatory cytokines in brain and spinal cord, and increased percentage of regulatory T cells in the spleens and lymph nodes. Collectively, these findings demonstrate the translational potential of AAV-delivered NT-3 for chronic progressive MS.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00518-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is an immune-mediated chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than 2.5 million patients worldwide. Chronic demyelination in the CNS has an important role in perpetuating axonal loss and increases difficulty in promoting remyelination. Therefore, regenerative, and neuroprotective strategies are essential to overcome this impediment to rescue axonal integrity and function. Neurotrophin 3 (NT-3) has immunomodulatory and anti-inflammatory properties, in addition to its well-recognized function in nervous system development, myelination, neuroprotection, and regeneration. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of experimental autoimmune encephalomyelitis (EAE) mice, the chronic relapsing mouse model of MS, at 3 weeks post EAE induction. Measurable NT-3 levels were found in serum at 7-weeks post gene delivery. The treated cohort showed improved clinical scores and performed significantly better in rotarod, and grip strength tests compared to their untreated counterparts. Histopathologic studies showed improved remyelination and axon protection. These data correlated with reduced expression of the pro-inflammatory cytokines in brain and spinal cord, and increased percentage of regulatory T cells in the spleens and lymph nodes. Collectively, these findings demonstrate the translational potential of AAV-delivered NT-3 for chronic progressive MS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene Therapy
Gene Therapy 医学-生化与分子生物学
CiteScore
9.70
自引率
2.00%
发文量
67
审稿时长
4-8 weeks
期刊介绍: Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信