Enggel Beatriz Silva Carmo, Renato C Macedo-Rego, M Fernanda G V Peñaflor
{"title":"Herbivory by multiple arthropods does not hinder the attraction of natural enemies to plant volatiles: insights from a meta-analysis.","authors":"Enggel Beatriz Silva Carmo, Renato C Macedo-Rego, M Fernanda G V Peñaflor","doi":"10.1016/j.cois.2025.101347","DOIUrl":null,"url":null,"abstract":"<p><p>Plants under herbivore attack emit herbivore-induced plant volatiles (HIPVs) that recruit natural enemies (NEs) of the herbivores for defense. The composition of HIPVs is often specific to the herbivore species, and infestation by multiple herbivore species produces a distinct volatile blend compared to single infestations, potentially influencing tritrophic interactions. Although two decades of research have investigated how multiple herbivory can affect chemically-mediated tritrophic interactions, a comprehensive understanding on this topic remains elusive, as studies have shown varying results depending on the system examined. We performed a quantitative synthesis of 29 studies, extracting effect sizes from 94 experiments that assessed the olfactory preferences of NEs for HIPVs emitted from multiple-infested and single-infested plants. Our analysis revealed that multiple infestations do not affect the attractiveness of HIPVs to NEs, regardless of whether the plant is infested by nonhosts, hosts from different or the same feeding guild, the NE dietary specialization, or guild. However, specialist NEs prefer HIPVs emitted from plants with hosts even if they are infested by multiple herbivores over those infested by only a single non-host herbivore. Our meta-analysis provides valuable insights into the complexity of chemically-mediated tritrophic interactions, demonstrating that the co-infestation with nonhosts or multiple hosts do not affect attractiveness of HIPVs to NEs.</p>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":" ","pages":"101347"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.cois.2025.101347","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants under herbivore attack emit herbivore-induced plant volatiles (HIPVs) that recruit natural enemies (NEs) of the herbivores for defense. The composition of HIPVs is often specific to the herbivore species, and infestation by multiple herbivore species produces a distinct volatile blend compared to single infestations, potentially influencing tritrophic interactions. Although two decades of research have investigated how multiple herbivory can affect chemically-mediated tritrophic interactions, a comprehensive understanding on this topic remains elusive, as studies have shown varying results depending on the system examined. We performed a quantitative synthesis of 29 studies, extracting effect sizes from 94 experiments that assessed the olfactory preferences of NEs for HIPVs emitted from multiple-infested and single-infested plants. Our analysis revealed that multiple infestations do not affect the attractiveness of HIPVs to NEs, regardless of whether the plant is infested by nonhosts, hosts from different or the same feeding guild, the NE dietary specialization, or guild. However, specialist NEs prefer HIPVs emitted from plants with hosts even if they are infested by multiple herbivores over those infested by only a single non-host herbivore. Our meta-analysis provides valuable insights into the complexity of chemically-mediated tritrophic interactions, demonstrating that the co-infestation with nonhosts or multiple hosts do not affect attractiveness of HIPVs to NEs.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.