Xianxiao Zhou, Ling Wu, Minghui Wang, Guojun Wu, Bin Zhang
{"title":"iDOMO: identification of drug combinations via multi-set operations for treating diseases.","authors":"Xianxiao Zhou, Ling Wu, Minghui Wang, Guojun Wu, Bin Zhang","doi":"10.1093/bib/bbaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Combination therapy has become increasingly important for treating complex diseases which often involve multiple pathways and targets. However, experimental screening of drug combinations is costly and time-consuming. The availability of large-scale transcriptomic datasets (e.g. CMap and LINCS) from in vitro drug treatment experiments makes it possible to computationally predict drug combinations with synergistic effects. Towards this end, we developed a computational approach, termed Identification of Drug Combinations via Multi-Set Operations (iDOMO), to predict drug synergy based on multi-set operations of drug and disease gene signatures. iDOMO quantifies the synergistic effect of a pair of drugs by taking into account the combination's beneficial and detrimental effects on treating a disease. We evaluated iDOMO, in a DREAM Challenge dataset with the matched, pre- and post-treatment gene expression data and cell viability information. We further evaluated the performance of iDOMO by concordance index and Spearman correlation on predicting the Highest Single Agency (HSA) synergy scores for four most common cancer types in two large-scale drug combination databases, showing that iDOMO significantly outperformed two existing popular drug combination approaches including the Therapeutic Score and the SynergySeq Orthogonality Score. Application of iDOMO to triple-negative breast cancer (TNBC) identified drug pairs with potential synergistic effects, with the combination of trifluridine and monobenzone being the most synergistic. Our in vitro experiments confirmed that the top predicted drug combination exerted a significant synergistic effect in inhibiting TNBC cell growth. In summary, iDOMO is an effective method for the in silico screening of synergistic drug combinations and will be a valuable tool for the development of novel therapeutics for complex diseases.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Combination therapy has become increasingly important for treating complex diseases which often involve multiple pathways and targets. However, experimental screening of drug combinations is costly and time-consuming. The availability of large-scale transcriptomic datasets (e.g. CMap and LINCS) from in vitro drug treatment experiments makes it possible to computationally predict drug combinations with synergistic effects. Towards this end, we developed a computational approach, termed Identification of Drug Combinations via Multi-Set Operations (iDOMO), to predict drug synergy based on multi-set operations of drug and disease gene signatures. iDOMO quantifies the synergistic effect of a pair of drugs by taking into account the combination's beneficial and detrimental effects on treating a disease. We evaluated iDOMO, in a DREAM Challenge dataset with the matched, pre- and post-treatment gene expression data and cell viability information. We further evaluated the performance of iDOMO by concordance index and Spearman correlation on predicting the Highest Single Agency (HSA) synergy scores for four most common cancer types in two large-scale drug combination databases, showing that iDOMO significantly outperformed two existing popular drug combination approaches including the Therapeutic Score and the SynergySeq Orthogonality Score. Application of iDOMO to triple-negative breast cancer (TNBC) identified drug pairs with potential synergistic effects, with the combination of trifluridine and monobenzone being the most synergistic. Our in vitro experiments confirmed that the top predicted drug combination exerted a significant synergistic effect in inhibiting TNBC cell growth. In summary, iDOMO is an effective method for the in silico screening of synergistic drug combinations and will be a valuable tool for the development of novel therapeutics for complex diseases.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.