Yiru Pan, Xingyu Ji, Jiaqi You, Lu Li, Zhenping Liu, Xianlong Zhang, Zeyu Zhang, Maojun Wang
{"title":"CSGDN: contrastive signed graph diffusion network for predicting crop gene-phenotype associations.","authors":"Yiru Pan, Xingyu Ji, Jiaqi You, Lu Li, Zhenping Liu, Xianlong Zhang, Zeyu Zhang, Maojun Wang","doi":"10.1093/bib/bbaf062","DOIUrl":null,"url":null,"abstract":"<p><p>Positive and negative association prediction between gene and phenotype helps to illustrate the underlying mechanism of complex traits in organisms. The transcription and regulation activity of specific genes will be adjusted accordingly in different cell types, developmental timepoints, and physiological states. There are the following two problems in obtaining the positive/negative associations between gene and phenotype: (1) high-throughput DNA/RNA sequencing and phenotyping are expensive and time-consuming due to the need to process large sample sizes; (2) experiments introduce both random and systematic errors, and, meanwhile, calculations or predictions using software or models may produce noise. To address these two issues, we propose a Contrastive Signed Graph Diffusion Network, CSGDN, to learn robust node representations with fewer training samples to achieve higher link prediction accuracy. CSGDN uses a signed graph diffusion method to uncover the underlying regulatory associations between genes and phenotypes. Then, stochastic perturbation strategies are used to create two views for both original and diffusive graphs. Lastly, a multiview contrastive learning paradigm loss is designed to unify the node presentations learned from the two views to resist interference and reduce noise. We perform experiments to validate the performance of CSGDN in three crop datasets: Gossypium hirsutum, Brassica napus, and Triticum turgidum. The results show that the proposed model outperforms state-of-the-art methods by up to 9. 28% AUC for the prediction of link sign in the G. hirsutum dataset. The source code of our model is available at https://github.com/Erican-Ji/CSGDN.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Positive and negative association prediction between gene and phenotype helps to illustrate the underlying mechanism of complex traits in organisms. The transcription and regulation activity of specific genes will be adjusted accordingly in different cell types, developmental timepoints, and physiological states. There are the following two problems in obtaining the positive/negative associations between gene and phenotype: (1) high-throughput DNA/RNA sequencing and phenotyping are expensive and time-consuming due to the need to process large sample sizes; (2) experiments introduce both random and systematic errors, and, meanwhile, calculations or predictions using software or models may produce noise. To address these two issues, we propose a Contrastive Signed Graph Diffusion Network, CSGDN, to learn robust node representations with fewer training samples to achieve higher link prediction accuracy. CSGDN uses a signed graph diffusion method to uncover the underlying regulatory associations between genes and phenotypes. Then, stochastic perturbation strategies are used to create two views for both original and diffusive graphs. Lastly, a multiview contrastive learning paradigm loss is designed to unify the node presentations learned from the two views to resist interference and reduce noise. We perform experiments to validate the performance of CSGDN in three crop datasets: Gossypium hirsutum, Brassica napus, and Triticum turgidum. The results show that the proposed model outperforms state-of-the-art methods by up to 9. 28% AUC for the prediction of link sign in the G. hirsutum dataset. The source code of our model is available at https://github.com/Erican-Ji/CSGDN.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.