Traits determine dispersal and colonization abilities of microbes.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Applied and Environmental Microbiology Pub Date : 2025-03-19 Epub Date: 2025-02-20 DOI:10.1128/aem.02055-24
Isidora Echenique-Subiabre, Sara L Jackrel, Jay McCarren, Chase C James, Elisabet Perez-Coronel, Cindy Tran, Madeline Perreault, Ugbad Farah, P Signe White, Henry K Baker, Christopher B Wall, Lindsay Sager, Scott Becker, Andrew D Barton, Jonathan B Shurin
{"title":"Traits determine dispersal and colonization abilities of microbes.","authors":"Isidora Echenique-Subiabre, Sara L Jackrel, Jay McCarren, Chase C James, Elisabet Perez-Coronel, Cindy Tran, Madeline Perreault, Ugbad Farah, P Signe White, Henry K Baker, Christopher B Wall, Lindsay Sager, Scott Becker, Andrew D Barton, Jonathan B Shurin","doi":"10.1128/aem.02055-24","DOIUrl":null,"url":null,"abstract":"<p><p>Many microbes disperse through the air, yet the phenotypic traits that enhance or constrain aerial dispersal or allow successful colonization of new habitats are poorly understood. We used a metabarcoding bacterial and eukaryotic data set to explore the trait structures of the aquatic, terrestrial, and airborne microbial communities near the Salton Sea, California, as well as those colonizing a series of experimental aquatic mesocosms. We assigned taxonomic identities to amplicon sequence variants (ASVs) and matched them to functional trait values through published papers and databases that infer phenotypic and/or metabolic traits information from taxonomy. We asked what traits distinguish successful microbial dispersers and/or colonizers from terrestrial and aquatic source communities. Our study found broad differences in taxonomic and trait composition between dispersers and colonizers compared to the source soil and water communities. Dispersers were characterized by larger cell diameters, colony formation, and fermentation abilities, while colonizers tended to be phototrophs that form mucilage and have siliceous coverings. Shorter population doubling times, spore-, and/or cyst-forming organisms were more abundant among the dispersers and colonizers than the sources. These results show that the capacity for aerial dispersal and colonization varies among microbial functional groups and taxa and is related to traits that affect other functions like resource acquisition, predator avoidance, and reproduction. The ability to disperse and colonize new habitats may therefore distinguish microbial guilds based on tradeoffs among alternate ecological strategies.IMPORTANCEMicrobes have long been thought to disperse rapidly across biogeographic barriers; however, whether dispersal or colonization vary among taxa or groups or is related to cellular traits remains unknown. We use a novel approach to understand how microorganisms disperse and establish themselves in different environments by looking at their traits (physiology, morphology, life history, and behavior characteristics). By collecting samples from habitats including water, soil, and the air and colonizing experimental tanks, we found dispersal and invasion vary among microorganisms. Some taxa and functional groups are found more often in the air or colonizing aquatic environments, while others that are commonly found in the soil or water rarely disperse or invade new habitat. Interestingly, the traits that help microorganisms survive and thrive also play a role in their ability to disperse and colonize. These findings have significant implications for understanding microorganisms' success and adaptation to new environments.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0205524"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02055-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many microbes disperse through the air, yet the phenotypic traits that enhance or constrain aerial dispersal or allow successful colonization of new habitats are poorly understood. We used a metabarcoding bacterial and eukaryotic data set to explore the trait structures of the aquatic, terrestrial, and airborne microbial communities near the Salton Sea, California, as well as those colonizing a series of experimental aquatic mesocosms. We assigned taxonomic identities to amplicon sequence variants (ASVs) and matched them to functional trait values through published papers and databases that infer phenotypic and/or metabolic traits information from taxonomy. We asked what traits distinguish successful microbial dispersers and/or colonizers from terrestrial and aquatic source communities. Our study found broad differences in taxonomic and trait composition between dispersers and colonizers compared to the source soil and water communities. Dispersers were characterized by larger cell diameters, colony formation, and fermentation abilities, while colonizers tended to be phototrophs that form mucilage and have siliceous coverings. Shorter population doubling times, spore-, and/or cyst-forming organisms were more abundant among the dispersers and colonizers than the sources. These results show that the capacity for aerial dispersal and colonization varies among microbial functional groups and taxa and is related to traits that affect other functions like resource acquisition, predator avoidance, and reproduction. The ability to disperse and colonize new habitats may therefore distinguish microbial guilds based on tradeoffs among alternate ecological strategies.IMPORTANCEMicrobes have long been thought to disperse rapidly across biogeographic barriers; however, whether dispersal or colonization vary among taxa or groups or is related to cellular traits remains unknown. We use a novel approach to understand how microorganisms disperse and establish themselves in different environments by looking at their traits (physiology, morphology, life history, and behavior characteristics). By collecting samples from habitats including water, soil, and the air and colonizing experimental tanks, we found dispersal and invasion vary among microorganisms. Some taxa and functional groups are found more often in the air or colonizing aquatic environments, while others that are commonly found in the soil or water rarely disperse or invade new habitat. Interestingly, the traits that help microorganisms survive and thrive also play a role in their ability to disperse and colonize. These findings have significant implications for understanding microorganisms' success and adaptation to new environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信