A preoperative pathological staging prediction model for esophageal cancer based on CT radiomics.

IF 3.4 2区 医学 Q2 ONCOLOGY
Haojun Li, Shuoming Liang, Mengxuan Cui, Weiqiu Jin, Xiaofeng Jiang, Simiao Lu, Jicheng Xiong, Hainan Chen, Ziwei Wang, Guotai Wang, Jiming Xu, Linfeng Li, Yao Wang, Haomiao Qing, Yongtao Han, Xuefeng Leng
{"title":"A preoperative pathological staging prediction model for esophageal cancer based on CT radiomics.","authors":"Haojun Li, Shuoming Liang, Mengxuan Cui, Weiqiu Jin, Xiaofeng Jiang, Simiao Lu, Jicheng Xiong, Hainan Chen, Ziwei Wang, Guotai Wang, Jiming Xu, Linfeng Li, Yao Wang, Haomiao Qing, Yongtao Han, Xuefeng Leng","doi":"10.1186/s12885-025-13697-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate and comprehensive preoperative staging is one of the most important prognostic factors for the management of esophageal cancer (EC). We aimed to develop and validate predictive models using radiomics from preoperative contrast-enhanced Computed Tomography (CT) images to assess pathological staging in EC patients.</p><p><strong>Methods: </strong>This study retrospectively included 161 patients who underwent esophagectomy at Sichuan Cancer Hospital from July 2018 to February 2023. Pathological staging outcomes encompassed overall TNM staging, T and N staging, and tumor progressions (vascular invasion and perineural invasion). Radiomics features were extracted from segmented regions of tumors. A radiomic signature (Rad-signature) for each outcome was developed using a fivefold cross-validation least absolute shrinkage and selection operator (LASSO) regression model within the training cohort and subsequently validated in the test cohort for predictive accuracy.</p><p><strong>Results: </strong>Out of the 851 radiomics features extracted, two were selected to formulate the Rad-signature for each staging outcome. These signatures showed a significant correlation with their respective outcomes in both the training set and the testing set. Furthermore, the Rad-signature exhibited favorable predictive performance for advanced pTNM staging, advanced pT staging, vascular invasion and perineural invasion, with AUC of 0.721 [95%CI, 0.570-0.872], 0.900 [95%CI 0.805-0.995], 0.824 [0.686-0.961], and 0.737 [0.586-0.887], respectively. However, the predictive performance of the Rad-signature for pN staging is moderate (AUC = 0.693 [0.534-0.852]), indicating needs for additional data modalities.</p><p><strong>Conclusions: </strong>This study established a non-invasive preoperative radiomics model that demonstrated good predictive performance in determining the pTNM staging, pT staging, vascular invasion, and perineural invasion for EC patients. These results could inform personalized treatment strategies and improve outcomes for EC patients.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"298"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13697-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate and comprehensive preoperative staging is one of the most important prognostic factors for the management of esophageal cancer (EC). We aimed to develop and validate predictive models using radiomics from preoperative contrast-enhanced Computed Tomography (CT) images to assess pathological staging in EC patients.

Methods: This study retrospectively included 161 patients who underwent esophagectomy at Sichuan Cancer Hospital from July 2018 to February 2023. Pathological staging outcomes encompassed overall TNM staging, T and N staging, and tumor progressions (vascular invasion and perineural invasion). Radiomics features were extracted from segmented regions of tumors. A radiomic signature (Rad-signature) for each outcome was developed using a fivefold cross-validation least absolute shrinkage and selection operator (LASSO) regression model within the training cohort and subsequently validated in the test cohort for predictive accuracy.

Results: Out of the 851 radiomics features extracted, two were selected to formulate the Rad-signature for each staging outcome. These signatures showed a significant correlation with their respective outcomes in both the training set and the testing set. Furthermore, the Rad-signature exhibited favorable predictive performance for advanced pTNM staging, advanced pT staging, vascular invasion and perineural invasion, with AUC of 0.721 [95%CI, 0.570-0.872], 0.900 [95%CI 0.805-0.995], 0.824 [0.686-0.961], and 0.737 [0.586-0.887], respectively. However, the predictive performance of the Rad-signature for pN staging is moderate (AUC = 0.693 [0.534-0.852]), indicating needs for additional data modalities.

Conclusions: This study established a non-invasive preoperative radiomics model that demonstrated good predictive performance in determining the pTNM staging, pT staging, vascular invasion, and perineural invasion for EC patients. These results could inform personalized treatment strategies and improve outcomes for EC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信