18F-FDG PET/CT-based intratumoral and peritumoral radiomics combining ensemble learning for prognosis prediction in hepatocellular carcinoma: a multi-center study.

IF 3.4 2区 医学 Q2 ONCOLOGY
Chunxiao Sui, Kun Chen, Enci Ding, Rui Tan, Yue Li, Jie Shen, Wengui Xu, Xiaofeng Li
{"title":"<sup>18</sup>F-FDG PET/CT-based intratumoral and peritumoral radiomics combining ensemble learning for prognosis prediction in hepatocellular carcinoma: a multi-center study.","authors":"Chunxiao Sui, Kun Chen, Enci Ding, Rui Tan, Yue Li, Jie Shen, Wengui Xu, Xiaofeng Li","doi":"10.1186/s12885-025-13649-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiomic models combining intratumoral with peritumoral features are potentially beneficial to enhance the predictive performance. This study aimed to identify the optimal <sup>18</sup>F-FDG PET/CT-derived radiomic models for prediction of prognosis in hepatocellular carcinoma (HCC).</p><p><strong>Methods: </strong>A total of 135 HCC patients from two institutions were retrospectively included. Four peritumoral regions were defined by dilating tumor region with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm, respectively. Based on segmentation of intratumoral, peritumoral and integrated volume of interest (VOI), corresponding radiomic features were extracted respectively. After feature selection, a total of 15 intratumoral radiomic models were constructed based on five ensemble learning algorithms and radiomic features from three image modalities. Then, the optimal combination of ensemble learning algorithms and image modality in the intratumoral models was selected to develop subsequent peritumoral radiomic models and integrated radiomic models. Finally, a nomogram was developed incorporating the optimal radiomic model with clinical independent predictors to achieve an intuitive representation of the prediction model.</p><p><strong>Results: </strong>Among the intratumoral radiomic models, the one which combined PET/CT-based radiomic features with SVM classifier outperformed other models. With the addition of peritumoral information, the integrated model based on an integration of intratumoral and 2 mm-peritumoral VOI, was finally approved as the optimal radiomic model with a mean AUC of 0.831 in the internal validation, and a highest AUC of 0.839 (95%CI:0.718-0.960) in the external test. Furthermore, a nomogram incorporating the optimal radiomic model with HBV infection and TNM status, was able to predict the prognosis for HCC with an AUC of 0.889 (95%CI: 0.799-0.979).</p><p><strong>Conclusions: </strong>The integrated intratumoral and peritumoral radiomic model, especially for a 2 mm peritumoral region, was verified as the optimal radiomic model to predict the overall survival of HCC. Furthermore, combination of integrated radiomic model with significant clinical parameter contributed to further enhance the prediction efficacy.</p><p><strong>Trial registration: </strong>This study was a retrospective study, so it was free from registration.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"300"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13649-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiomic models combining intratumoral with peritumoral features are potentially beneficial to enhance the predictive performance. This study aimed to identify the optimal 18F-FDG PET/CT-derived radiomic models for prediction of prognosis in hepatocellular carcinoma (HCC).

Methods: A total of 135 HCC patients from two institutions were retrospectively included. Four peritumoral regions were defined by dilating tumor region with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm, respectively. Based on segmentation of intratumoral, peritumoral and integrated volume of interest (VOI), corresponding radiomic features were extracted respectively. After feature selection, a total of 15 intratumoral radiomic models were constructed based on five ensemble learning algorithms and radiomic features from three image modalities. Then, the optimal combination of ensemble learning algorithms and image modality in the intratumoral models was selected to develop subsequent peritumoral radiomic models and integrated radiomic models. Finally, a nomogram was developed incorporating the optimal radiomic model with clinical independent predictors to achieve an intuitive representation of the prediction model.

Results: Among the intratumoral radiomic models, the one which combined PET/CT-based radiomic features with SVM classifier outperformed other models. With the addition of peritumoral information, the integrated model based on an integration of intratumoral and 2 mm-peritumoral VOI, was finally approved as the optimal radiomic model with a mean AUC of 0.831 in the internal validation, and a highest AUC of 0.839 (95%CI:0.718-0.960) in the external test. Furthermore, a nomogram incorporating the optimal radiomic model with HBV infection and TNM status, was able to predict the prognosis for HCC with an AUC of 0.889 (95%CI: 0.799-0.979).

Conclusions: The integrated intratumoral and peritumoral radiomic model, especially for a 2 mm peritumoral region, was verified as the optimal radiomic model to predict the overall survival of HCC. Furthermore, combination of integrated radiomic model with significant clinical parameter contributed to further enhance the prediction efficacy.

Trial registration: This study was a retrospective study, so it was free from registration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信