Marko Radojković, Anouk Bruggeling van Ingen, Monika Timmer, Marcellus Ubbink
{"title":"Stabilizing Mutations Enhance Evolvability of BlaC β-lactamase by Widening the Mutational Landscape","authors":"Marko Radojković, Anouk Bruggeling van Ingen, Monika Timmer, Marcellus Ubbink","doi":"10.1016/j.jmb.2025.168999","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance is fueled by the rapid evolution of β-lactamases. However, a gain of new enzyme activity often comes at the expense of reduced protein stability. This evolutionary constraint is often overcome by the acquisition of stabilizing mutations that compensate for the loss of stability invoked by new function mutations. Here, we report three stabilizing mutations (I105F, H184R, and V263I) in BlaC, a serine β-lactamase from <em>Mycobacterium tuberculosis</em>. Using a severely destabilized variant as a template for random mutagenesis and selection, these three mutations emerged together and were able to fully restore resistance toward the antibiotic carbenicillin. <em>In vitro</em> characterization shows that all three mutations increase chemical and thermal stability, which leads to elevated protein levels in the periplasm of <em>Escherichia coli</em>. We demonstrate that the introduction of stabilizing mutations substantially enhances the evolvability of the enzyme. These findings illustrate the important role of stabilizing mutations in enzyme evolution by alleviating function-stability trade-offs and broadening the accessible evolutionary landscape.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 9","pages":"Article 168999"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625000658","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance is fueled by the rapid evolution of β-lactamases. However, a gain of new enzyme activity often comes at the expense of reduced protein stability. This evolutionary constraint is often overcome by the acquisition of stabilizing mutations that compensate for the loss of stability invoked by new function mutations. Here, we report three stabilizing mutations (I105F, H184R, and V263I) in BlaC, a serine β-lactamase from Mycobacterium tuberculosis. Using a severely destabilized variant as a template for random mutagenesis and selection, these three mutations emerged together and were able to fully restore resistance toward the antibiotic carbenicillin. In vitro characterization shows that all three mutations increase chemical and thermal stability, which leads to elevated protein levels in the periplasm of Escherichia coli. We demonstrate that the introduction of stabilizing mutations substantially enhances the evolvability of the enzyme. These findings illustrate the important role of stabilizing mutations in enzyme evolution by alleviating function-stability trade-offs and broadening the accessible evolutionary landscape.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.