Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Mitchell DiPasquale, Maksymilian Dziura, Omotayo Gbadamosi, Stuart R Castillo, Ambreen Fahim, Justin Roberto, Jeffrey Atkinson, Natalie Boccalon, Mario Campana, Sai Venkatesh Pingali, P Charukeshi Chandrasekera, Piotr A Zolnierczuk, Michihiro Nagao, Elizabeth G Kelley, Drew Marquardt
{"title":"Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models.","authors":"Mitchell DiPasquale, Maksymilian Dziura, Omotayo Gbadamosi, Stuart R Castillo, Ambreen Fahim, Justin Roberto, Jeffrey Atkinson, Natalie Boccalon, Mario Campana, Sai Venkatesh Pingali, P Charukeshi Chandrasekera, Piotr A Zolnierczuk, Michihiro Nagao, Elizabeth G Kelley, Drew Marquardt","doi":"10.1021/acs.chemrestox.4c00425","DOIUrl":null,"url":null,"abstract":"<p><p>The popularity of electronic cigarettes and vaping products has launched the outbreak of a condition affecting the respiratory system of users, known as electronic-cigarette/vaping-associated lung injury (EVALI). The build-up of vitamin E acetate (VEA), a diluent of some illicit vaping oils, in the bronchoalveolar lavage of patients with EVALI provided circumstantial evidence as a target for investigation. In this work, we provide a fundamental characterization of the interaction of VEA with lung cells and pulmonary surfactant (PS) models to explore the mechanisms by which vaping-related lung injuries may be present. We first confirm the localization and uptake of VEA in pulmonary epithelial cells. Further, as PS is vitally responsible for the biophysical functions of the lungs, we explore the effect of added VEA on three increasingly complex models of PS: dipalmitoylphosphatidylcholine (DPPC), a lipid-only synthetic PS, and the biologically derived extract Curosurf. Using high-resolution techniques of small-angle X-ray scattering, small-angle neutron scattering, neutron spin-echo spectroscopy, and neutron reflectometry, we compare the molecular-scale behaviors of these membranes to the bulk viscoelastic properties of surfactant monolayer films as studied by Langmuir monolayer techniques. While VEA does not obviously alter the structure or organization of PS membranes, a consistent softening of membrane systems─regardless of compositional complexity─provides a biophysical explanation for the respiratory distress associated with EVALI and yields a new perspective on the behavior of the PS system.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The popularity of electronic cigarettes and vaping products has launched the outbreak of a condition affecting the respiratory system of users, known as electronic-cigarette/vaping-associated lung injury (EVALI). The build-up of vitamin E acetate (VEA), a diluent of some illicit vaping oils, in the bronchoalveolar lavage of patients with EVALI provided circumstantial evidence as a target for investigation. In this work, we provide a fundamental characterization of the interaction of VEA with lung cells and pulmonary surfactant (PS) models to explore the mechanisms by which vaping-related lung injuries may be present. We first confirm the localization and uptake of VEA in pulmonary epithelial cells. Further, as PS is vitally responsible for the biophysical functions of the lungs, we explore the effect of added VEA on three increasingly complex models of PS: dipalmitoylphosphatidylcholine (DPPC), a lipid-only synthetic PS, and the biologically derived extract Curosurf. Using high-resolution techniques of small-angle X-ray scattering, small-angle neutron scattering, neutron spin-echo spectroscopy, and neutron reflectometry, we compare the molecular-scale behaviors of these membranes to the bulk viscoelastic properties of surfactant monolayer films as studied by Langmuir monolayer techniques. While VEA does not obviously alter the structure or organization of PS membranes, a consistent softening of membrane systems─regardless of compositional complexity─provides a biophysical explanation for the respiratory distress associated with EVALI and yields a new perspective on the behavior of the PS system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信