Federico Villalobos, Jesús I Mendieta-Moreno, Jorge Lobo-Checa, Sara P Morcillo, José I Martínez, José María Gómez-Fernández, Pedro L de Andres, José A Martin-Gago, Juan M Cuerva, Araceli G Campaña, Carlos Sánchez-Sánchez
{"title":"Diastereomeric Configuration Drives an On-Surface Specific Rearrangement into Low Bandgap Non-Benzenoid Graphene Nanoribbons.","authors":"Federico Villalobos, Jesús I Mendieta-Moreno, Jorge Lobo-Checa, Sara P Morcillo, José I Martínez, José María Gómez-Fernández, Pedro L de Andres, José A Martin-Gago, Juan M Cuerva, Araceli G Campaña, Carlos Sánchez-Sánchez","doi":"10.1021/jacs.4c10478","DOIUrl":null,"url":null,"abstract":"<p><p>Stereochemistry, usually associated with the three-dimensional arrangement of atoms in molecules, is crucial in processes like life functions, drug action, or molecular reactions. This three-dimensionality typically originates from sp<sup>3</sup> hybridization in organic molecules, but it is also present in out-of-plane sp<sup>2</sup>-based molecules as a consequence of helical structures, twisting processes, and/or the presence of nonbenzenoid rings, the latter significantly influencing their global stereochemistry and leading to the emergence of new exotic properties. In this sense, on-surface synthesis methodologies provide the perfect framework for the precise synthesis and characterization of organic systems at the atomic scale, allowing for the accurate assessment of the associated stereochemical effects. In this work, we demonstrate the importance of the initial diastereomeric configuration in the surface-induced skeletal rearrangement of a substituted cyclooctatetraene (COT) moiety-a historical landmark in the understanding of aromaticity-into a cyclopenta[<i>c</i>,<i>d</i>]azulene (CPA) one in a chevron-like graphene nanoribbon (GNR). These findings are evidenced by combining bond-resolved scanning tunneling microscopy with theoretical ab initio calculations. Interestingly, the major well-defined product, a CPA chevron-like GNR, exhibits the lowest bandgap reported to date for an all-carbon chevron-like GNR, as evidenced by scanning tunneling spectroscopy measurements. This work paves the way for the rational application of stereochemistry in the on-surface synthesis of novel graphene-based nanostructures.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stereochemistry, usually associated with the three-dimensional arrangement of atoms in molecules, is crucial in processes like life functions, drug action, or molecular reactions. This three-dimensionality typically originates from sp3 hybridization in organic molecules, but it is also present in out-of-plane sp2-based molecules as a consequence of helical structures, twisting processes, and/or the presence of nonbenzenoid rings, the latter significantly influencing their global stereochemistry and leading to the emergence of new exotic properties. In this sense, on-surface synthesis methodologies provide the perfect framework for the precise synthesis and characterization of organic systems at the atomic scale, allowing for the accurate assessment of the associated stereochemical effects. In this work, we demonstrate the importance of the initial diastereomeric configuration in the surface-induced skeletal rearrangement of a substituted cyclooctatetraene (COT) moiety-a historical landmark in the understanding of aromaticity-into a cyclopenta[c,d]azulene (CPA) one in a chevron-like graphene nanoribbon (GNR). These findings are evidenced by combining bond-resolved scanning tunneling microscopy with theoretical ab initio calculations. Interestingly, the major well-defined product, a CPA chevron-like GNR, exhibits the lowest bandgap reported to date for an all-carbon chevron-like GNR, as evidenced by scanning tunneling spectroscopy measurements. This work paves the way for the rational application of stereochemistry in the on-surface synthesis of novel graphene-based nanostructures.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.