{"title":"Increase Docking Score Screening Power by Simple Fusion With CNNscore","authors":"Huicong Liang, Aowei Xie, Ning Hou, Fengjiao Wei, Ting Gao, Jiajie Li, Xinru Gao, Chuanqin Shi, Gaokeng Xiao, Ximing Xu","doi":"10.1002/jcc.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Scoring functions (SFs) of molecular docking is a vital component of structure-based virtual screening (SBVS). Traditional SFs yield their inherent shortage for idealized approximations and simplifications predicting the binding affinity. Complementarily, SFs based on deep learning (DL) have emerged as powerful tools for capturing intricate features within protein-ligand (PL) interactions. We here present a docking-score fusion strategy that integrates pose scores derived from GNINA's convolutional neural network (CNN) with traditional docking scores. Extensive validation on diverse datasets has shown that by means of multiplying Watvina docking score by CNNscore demonstrates state-of-the-art screening power. Furthermore, in a reverse practice, our docking-score fusion technique was incorporated into the virtual screening (VS) workflow aimed at identifying inhibitors of the challenging target TYK2. Two promising hits with IC<sub>50</sub> 9.99 μM and 13.76 μM in vitro were identified from nearly 12 billion molecules.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70060","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scoring functions (SFs) of molecular docking is a vital component of structure-based virtual screening (SBVS). Traditional SFs yield their inherent shortage for idealized approximations and simplifications predicting the binding affinity. Complementarily, SFs based on deep learning (DL) have emerged as powerful tools for capturing intricate features within protein-ligand (PL) interactions. We here present a docking-score fusion strategy that integrates pose scores derived from GNINA's convolutional neural network (CNN) with traditional docking scores. Extensive validation on diverse datasets has shown that by means of multiplying Watvina docking score by CNNscore demonstrates state-of-the-art screening power. Furthermore, in a reverse practice, our docking-score fusion technique was incorporated into the virtual screening (VS) workflow aimed at identifying inhibitors of the challenging target TYK2. Two promising hits with IC50 9.99 μM and 13.76 μM in vitro were identified from nearly 12 billion molecules.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.