Exploring Potential Drug Targets in Multiple Cardiovascular Diseases: A Study Based on Proteome-Wide Mendelian Randomization and Colocalization Analysis

IF 3.4 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Maoxia Fan, Na Li, Libin Huang, Chen Chen, Xueyan Dong, Wulin Gao
{"title":"Exploring Potential Drug Targets in Multiple Cardiovascular Diseases: A Study Based on Proteome-Wide Mendelian Randomization and Colocalization Analysis","authors":"Maoxia Fan,&nbsp;Na Li,&nbsp;Libin Huang,&nbsp;Chen Chen,&nbsp;Xueyan Dong,&nbsp;Wulin Gao","doi":"10.1155/cdr/5711316","DOIUrl":null,"url":null,"abstract":"<p><b>Background:</b> Cardiovascular diseases (CVDs) encompass a group of diseases that affect the heart and/or blood vessels, making them the leading cause of global mortality. In our study, we performed proteome-wide Mendelian randomization (MR) and colocalization analyses to identify novel therapeutic protein targets for CVDs and evaluate the potential drug-related protein side effects.</p><p><b>Methods:</b> We conducted a comprehensive proteome-wide MR study to assess the causal relationship between plasma proteins and the risk of CVDs. Summary-level data for 4907 circulating protein levels were extracted from a large-scale protein quantitative trait loci (pQTL) study involving 35,559 individuals. Additionally, genome-wide association study (GWAS) data for CVDs were extracted from the UK Biobank and the Finnish database. Colocalization analysis was utilized to identify causal variants shared between plasma proteins and CVDs. Finally, we conducted a comprehensive phenome-wide association study (PheWAS) using the R10 version of the Finnish database. This study was aimed at examining the potential drug-related protein side effects in the treatment of CVDs. A total of 2408 phenotypes were included in the analysis, categorized into 44 groups.</p><p><b>Results:</b> The research findings indicate the following associations: (1) In coronary artery disease (CAD), the plasma proteins A4GNT, COL6A3, KLC1, CALB2, KPNA2, MSMP, and ADH1B showed a positive causal relationship (<i>p</i>-fdr &lt; 0.05). LAYN and GCKR exhibited a negative causal relationship (<i>p</i>-fdr &lt; 0.05). (2) In chronic heart failure (CHF), PLG demonstrated a positive causal relationship (<i>p</i>-fdr &lt; 0.05), while AZGP1 displayed a negative causal relationship (<i>p</i>-fdr &lt; 0.05). (3) In ischemic stroke (IS), ALDH2 exhibited a positive causal relationship (<i>p</i>-fdr &lt; 0.05), while PELO showed a negative causal relationship (<i>p</i>-fdr &lt; 0.05). (4) In Type 2 diabetes (T2DM), the plasma proteins MCL1, SVEP1, PIP4K2A, RFK, HEXIM2, ALDH2, RAB1A, APOE, ANGPTL4, JAG1, FGFR1, and MLN demonstrated a positive causal relationship (<i>p</i>-fdr &lt; 0.05). PTPN9, SNUPN, VAT1, COMT, CCL27, BMP7, and MSMP displayed a negative causal relationship (<i>p</i>-fdr &lt; 0.05). Colocalization analysis conclusively identified that AZGP1, ALDH2, APOE, JAG1, MCL1, PTPN9, PIP4K2A, SNUPN, and RAB1A share a single causal variant with CVDs (PPH3 + PPH4 &gt; 0.8). Further phenotype-wide association studies have shown some potential side effects of these nine targets (<i>p</i>-fdr &lt; 0.05).</p><p><b>Conclusions:</b> This study identifies plasma proteins with significant causal associations with CVDs, providing a more comprehensive understanding of potential therapeutic targets. These findings contribute to our knowledge of the underlying mechanisms and offer insights into potential avenues for treatment.</p>","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":"2025 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cdr/5711316","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cdr/5711316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cardiovascular diseases (CVDs) encompass a group of diseases that affect the heart and/or blood vessels, making them the leading cause of global mortality. In our study, we performed proteome-wide Mendelian randomization (MR) and colocalization analyses to identify novel therapeutic protein targets for CVDs and evaluate the potential drug-related protein side effects.

Methods: We conducted a comprehensive proteome-wide MR study to assess the causal relationship between plasma proteins and the risk of CVDs. Summary-level data for 4907 circulating protein levels were extracted from a large-scale protein quantitative trait loci (pQTL) study involving 35,559 individuals. Additionally, genome-wide association study (GWAS) data for CVDs were extracted from the UK Biobank and the Finnish database. Colocalization analysis was utilized to identify causal variants shared between plasma proteins and CVDs. Finally, we conducted a comprehensive phenome-wide association study (PheWAS) using the R10 version of the Finnish database. This study was aimed at examining the potential drug-related protein side effects in the treatment of CVDs. A total of 2408 phenotypes were included in the analysis, categorized into 44 groups.

Results: The research findings indicate the following associations: (1) In coronary artery disease (CAD), the plasma proteins A4GNT, COL6A3, KLC1, CALB2, KPNA2, MSMP, and ADH1B showed a positive causal relationship (p-fdr < 0.05). LAYN and GCKR exhibited a negative causal relationship (p-fdr < 0.05). (2) In chronic heart failure (CHF), PLG demonstrated a positive causal relationship (p-fdr < 0.05), while AZGP1 displayed a negative causal relationship (p-fdr < 0.05). (3) In ischemic stroke (IS), ALDH2 exhibited a positive causal relationship (p-fdr < 0.05), while PELO showed a negative causal relationship (p-fdr < 0.05). (4) In Type 2 diabetes (T2DM), the plasma proteins MCL1, SVEP1, PIP4K2A, RFK, HEXIM2, ALDH2, RAB1A, APOE, ANGPTL4, JAG1, FGFR1, and MLN demonstrated a positive causal relationship (p-fdr < 0.05). PTPN9, SNUPN, VAT1, COMT, CCL27, BMP7, and MSMP displayed a negative causal relationship (p-fdr < 0.05). Colocalization analysis conclusively identified that AZGP1, ALDH2, APOE, JAG1, MCL1, PTPN9, PIP4K2A, SNUPN, and RAB1A share a single causal variant with CVDs (PPH3 + PPH4 > 0.8). Further phenotype-wide association studies have shown some potential side effects of these nine targets (p-fdr < 0.05).

Conclusions: This study identifies plasma proteins with significant causal associations with CVDs, providing a more comprehensive understanding of potential therapeutic targets. These findings contribute to our knowledge of the underlying mechanisms and offer insights into potential avenues for treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Therapeutics
Cardiovascular Therapeutics 医学-心血管系统
CiteScore
5.60
自引率
0.00%
发文量
55
审稿时长
6 months
期刊介绍: Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged. Subject areas include (but are by no means limited to): Acute coronary syndrome Arrhythmias Atherosclerosis Basic cardiac electrophysiology Cardiac catheterization Cardiac remodeling Coagulation and thrombosis Diabetic cardiovascular disease Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF) Hyperlipidemia Hypertension Ischemic heart disease Vascular biology Ventricular assist devices Molecular cardio-biology Myocardial regeneration Lipoprotein metabolism Radial artery access Percutaneous coronary intervention Transcatheter aortic and mitral valve replacement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信