Real-time model-based condition monitoring of geothermal systems under uncertainties – Case study on electrical submersible pumps

0 ENERGY & FUELS
Pejman Shoeibi Omrani , Yifan Yang , Huub H.M. Rijnaarts , Shahab Shariat Torbaghan
{"title":"Real-time model-based condition monitoring of geothermal systems under uncertainties – Case study on electrical submersible pumps","authors":"Pejman Shoeibi Omrani ,&nbsp;Yifan Yang ,&nbsp;Huub H.M. Rijnaarts ,&nbsp;Shahab Shariat Torbaghan","doi":"10.1016/j.geoen.2025.213775","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring the condition of geothermal facilities and equipment (GFE) is crucial for ensuring reliable and cost-effective operations. This work emphasizes the importance of real-time data-driven condition monitoring for proactive operation and maintenance (O&amp;M) planning in geothermal assets. Recognizing that operational planning can be significantly impacted by uncertainties, a novel framework is proposed to monitor the performance of geothermal assets under these conditions. The approach combines machine learning (ML), statistical methods, and expert knowledge to account for uncertainty in evaluating the degradation or onset of failure in GFE. This method was applied to field data from a geothermal plant to monitor Electrical Submersible Pumps (ESPs) and tested for the accuracy and robustness of the framework. Additionally, the framework provides explainability, aiding in understanding the factors influencing equipment condition and degradation. The framework was capable of systematically detecting the onset of the ESP degradation up to six months prior to its failure, with an accuracy of more than 95% in estimating the performance of ESP during normal operation. The explainability layer provided insights on the cause of the failure which was not attributed to ESP malfunction but to a restriction in production inflow into the well. The framework's ability to accurately assess equipment condition under uncertainty supports more informed maintenance decisions, ultimately improving GFE operational reliability and efficiency.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"249 ","pages":"Article 213775"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the condition of geothermal facilities and equipment (GFE) is crucial for ensuring reliable and cost-effective operations. This work emphasizes the importance of real-time data-driven condition monitoring for proactive operation and maintenance (O&M) planning in geothermal assets. Recognizing that operational planning can be significantly impacted by uncertainties, a novel framework is proposed to monitor the performance of geothermal assets under these conditions. The approach combines machine learning (ML), statistical methods, and expert knowledge to account for uncertainty in evaluating the degradation or onset of failure in GFE. This method was applied to field data from a geothermal plant to monitor Electrical Submersible Pumps (ESPs) and tested for the accuracy and robustness of the framework. Additionally, the framework provides explainability, aiding in understanding the factors influencing equipment condition and degradation. The framework was capable of systematically detecting the onset of the ESP degradation up to six months prior to its failure, with an accuracy of more than 95% in estimating the performance of ESP during normal operation. The explainability layer provided insights on the cause of the failure which was not attributed to ESP malfunction but to a restriction in production inflow into the well. The framework's ability to accurately assess equipment condition under uncertainty supports more informed maintenance decisions, ultimately improving GFE operational reliability and efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信