DNA Methylation and Target Gene Expression in Fatty Liver Progression From Simple Steatosis to Advanced Fibrosis

IF 6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Jin Li, Xiaoqin Liu, Tran T. Tran, Miryoung Lee, Robert Y. L. Tsai
{"title":"DNA Methylation and Target Gene Expression in Fatty Liver Progression From Simple Steatosis to Advanced Fibrosis","authors":"Jin Li,&nbsp;Xiaoqin Liu,&nbsp;Tran T. Tran,&nbsp;Miryoung Lee,&nbsp;Robert Y. L. Tsai","doi":"10.1111/liv.70040","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Aim</h3>\n \n <p>Metabolic dysfunction-associated steatotic liver diseases (MASLD), also known as non-alcoholic fatty liver diseases (NAFLD), have become a leading risk factor for hepatocellular carcinoma (HCC) in Western countries. NAFLD progresses from simple steatosis to HCC, with advanced liver fibrosis (ALF) and metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) representing the two preceding high-risk stages.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analysed changes in the DNA methylation landscape from simple steatosis to ALF or NASH and determined their relevance in gene regulation and HCC survival. Methylomic datasets generated from applying the Illumina 450K BeadChip on human MASLD/NAFLD liver samples were analysed using integrative data analyses to identify differentially methylated regions (DMRs) associated with ALF (F3/4 vs. F0/1) or non-fibrotic NASH (NASH-F0/1 vs. NAFLD-F0/1).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Gene Set Enrichment Analysis (GSEA) of genes associated with fibrosis-DMRs showed enrichment in xenobiotic metabolism, UV response and hypoxia pathways. Expression of 25 DMR-associated genes showed significant associations with HCC survival outcomes, including 16 genes with fibrosis-DMRs and 2 with NASH-DMRs mapped to their promoter regions. Binding motifs of seven transcription factors (TFs) were enriched in fibrosis-DMRs. Four DMR-associated genes (ESR1, TYW3, CLGN and TUBB) displayed an inverse relationship between promoter methylation and gene expression during human MASLD progression, which was further validated in a mouse MASLD model.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We propose a model in which changes in promoter DNA methylation during NAFLD progression regulate gene expression, impacting HCC survival outcomes.</p>\n </section>\n </div>","PeriodicalId":18101,"journal":{"name":"Liver International","volume":"45 3","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liver International","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/liv.70040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aim

Metabolic dysfunction-associated steatotic liver diseases (MASLD), also known as non-alcoholic fatty liver diseases (NAFLD), have become a leading risk factor for hepatocellular carcinoma (HCC) in Western countries. NAFLD progresses from simple steatosis to HCC, with advanced liver fibrosis (ALF) and metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) representing the two preceding high-risk stages.

Methods

We analysed changes in the DNA methylation landscape from simple steatosis to ALF or NASH and determined their relevance in gene regulation and HCC survival. Methylomic datasets generated from applying the Illumina 450K BeadChip on human MASLD/NAFLD liver samples were analysed using integrative data analyses to identify differentially methylated regions (DMRs) associated with ALF (F3/4 vs. F0/1) or non-fibrotic NASH (NASH-F0/1 vs. NAFLD-F0/1).

Results

Gene Set Enrichment Analysis (GSEA) of genes associated with fibrosis-DMRs showed enrichment in xenobiotic metabolism, UV response and hypoxia pathways. Expression of 25 DMR-associated genes showed significant associations with HCC survival outcomes, including 16 genes with fibrosis-DMRs and 2 with NASH-DMRs mapped to their promoter regions. Binding motifs of seven transcription factors (TFs) were enriched in fibrosis-DMRs. Four DMR-associated genes (ESR1, TYW3, CLGN and TUBB) displayed an inverse relationship between promoter methylation and gene expression during human MASLD progression, which was further validated in a mouse MASLD model.

Conclusions

We propose a model in which changes in promoter DNA methylation during NAFLD progression regulate gene expression, impacting HCC survival outcomes.

Abstract Image

从单纯脂肪变性到晚期纤维化的脂肪肝进展过程中的 DNA 甲基化和靶基因表达
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Liver International
Liver International 医学-胃肠肝病学
CiteScore
13.90
自引率
4.50%
发文量
348
审稿时长
2 months
期刊介绍: Liver International promotes all aspects of the science of hepatology from basic research to applied clinical studies. Providing an international forum for the publication of high-quality original research in hepatology, it is an essential resource for everyone working on normal and abnormal structure and function in the liver and its constituent cells, including clinicians and basic scientists involved in the multi-disciplinary field of hepatology. The journal welcomes articles from all fields of hepatology, which may be published as original articles, brief definitive reports, reviews, mini-reviews, images in hepatology and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信