Trace metals in natural lakes: seasonal variation of manganese, cobalt, nickel, copper and zinc speciation in lakes of different trophic states

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Markus Dengg, Claudine H. Stirling, Niklas J. Lehto, Malcolm R. Reid, Karl Safi, Susanna A. Wood, Kyyas Seyitmuhammedov, Piet Verburg
{"title":"Trace metals in natural lakes: seasonal variation of manganese, cobalt, nickel, copper and zinc speciation in lakes of different trophic states","authors":"Markus Dengg,&nbsp;Claudine H. Stirling,&nbsp;Niklas J. Lehto,&nbsp;Malcolm R. Reid,&nbsp;Karl Safi,&nbsp;Susanna A. Wood,&nbsp;Kyyas Seyitmuhammedov,&nbsp;Piet Verburg","doi":"10.1007/s10533-024-01207-2","DOIUrl":null,"url":null,"abstract":"<div><p>Trace metal micronutrients are known to play an important role in the optimal functioning of aquatic microorganisms involved in the sequestration of atmospheric carbon dioxide. Understanding the biogeochemical cycling of trace metal micronutrients in the global ocean has been a focus of intense research over several decades. Conversely, investigations into the cycling of trace metals in lakes have been relatively rare. This study investigated the biogeochemical cycling of five biologically important trace metals, namely manganese, cobalt, nickel, copper and zinc in three New Zealand lakes of different trophic state. The surface water in the three lakes was sampled monthly over a year, during which depth profile samples were collected twice. The samples were analysed to examine how trace metal speciation and phytoplankton productivity interact in the three lakes over time. The cycling of the metals was driven by the different physicochemical and biogeochemical factors distinctive for each lake, including water column oxygen concentrations and the extent to which each metal was bound to particulates. Intriguingly, increased biological uptake or limitation of growth during times of high phytoplankton growth was not observed for any of the investigated trace metals. This is of interest, especially as many of the trace metals investigated were present in sub-nanomolar bioavailable concentrations. The results from this study emphasise the important role biogeochemical cycling plays in regulating the distributions and bioavailability of trace metals in lakes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01207-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01207-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Trace metal micronutrients are known to play an important role in the optimal functioning of aquatic microorganisms involved in the sequestration of atmospheric carbon dioxide. Understanding the biogeochemical cycling of trace metal micronutrients in the global ocean has been a focus of intense research over several decades. Conversely, investigations into the cycling of trace metals in lakes have been relatively rare. This study investigated the biogeochemical cycling of five biologically important trace metals, namely manganese, cobalt, nickel, copper and zinc in three New Zealand lakes of different trophic state. The surface water in the three lakes was sampled monthly over a year, during which depth profile samples were collected twice. The samples were analysed to examine how trace metal speciation and phytoplankton productivity interact in the three lakes over time. The cycling of the metals was driven by the different physicochemical and biogeochemical factors distinctive for each lake, including water column oxygen concentrations and the extent to which each metal was bound to particulates. Intriguingly, increased biological uptake or limitation of growth during times of high phytoplankton growth was not observed for any of the investigated trace metals. This is of interest, especially as many of the trace metals investigated were present in sub-nanomolar bioavailable concentrations. The results from this study emphasise the important role biogeochemical cycling plays in regulating the distributions and bioavailability of trace metals in lakes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信