Dg Loday–Pirashvili modules over Lie algebras

IF 0.7 4区 数学 Q2 MATHEMATICS
Zhuo Chen, Yu Qiao, Maosong Xiang, Tao Zhang
{"title":"Dg Loday–Pirashvili modules over Lie algebras","authors":"Zhuo Chen,&nbsp;Yu Qiao,&nbsp;Maosong Xiang,&nbsp;Tao Zhang","doi":"10.1007/s40062-024-00361-6","DOIUrl":null,"url":null,"abstract":"<div><p>A Loday–Pirashvili module over a Lie algebra <span>\\(\\mathfrak {g}\\)</span> is a Lie algebra object <span>\\(\\bigl (G\\xrightarrow {X} \\mathfrak {g}\\bigr )\\)</span> in the category of linear maps, or equivalently, a <span>\\(\\mathfrak {g}\\)</span>-module <i>G</i> which admits a <span>\\(\\mathfrak {g}\\)</span>-equivariant linear map <span>\\(X:G\\rightarrow \\mathfrak {g}\\)</span>. We study dg Loday–Pirashvili modules over Lie algebras, which is a generalization of Loday–Pirashvili modules in a natural way, and establish several equivalent characterizations of dg Loday–Pirashvili modules. To provide a concise characterization, a dg Loday–Pirashvili module is a non-negative and bounded dg <span>\\(\\mathfrak {g}\\)</span>-module <i>V</i> paired with a weak morphism of dg <span>\\(\\mathfrak {g}\\)</span>-modules <span>\\(\\alpha :V\\rightsquigarrow \\mathfrak {g}\\)</span>. Such a dg Loday–Pirashvili module resolves an arbitrarily specified classical Loday–Pirashvili module in the sense that it exists and is unique (up to homotopy). Dg Loday–Pirashvili modules can also be characterized through dg derivations. This perspective allows the calculation of the corresponding twisted Atiyah classes. By leveraging the Kapranov functor on the dg derivation arising from a dg Loday–Pirashvili module <span>\\((V,\\alpha )\\)</span>, a <span>\\(\\hbox {Leibniz}_\\infty [1]\\)</span> algebra structure can be derived on <span>\\(\\wedge ^\\bullet \\mathfrak {g}^\\vee \\otimes V[1]\\)</span>. The binary bracket of this structure corresponds to the twisted Atiyah cocycle. To exemplify these intricate algebraic structures through specific cases, we utilize this machinery to a particular type of dg Loday–Pirashvili modules stemming from Lie algebra pairs.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 1","pages":"23 - 61"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00361-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Loday–Pirashvili module over a Lie algebra \(\mathfrak {g}\) is a Lie algebra object \(\bigl (G\xrightarrow {X} \mathfrak {g}\bigr )\) in the category of linear maps, or equivalently, a \(\mathfrak {g}\)-module G which admits a \(\mathfrak {g}\)-equivariant linear map \(X:G\rightarrow \mathfrak {g}\). We study dg Loday–Pirashvili modules over Lie algebras, which is a generalization of Loday–Pirashvili modules in a natural way, and establish several equivalent characterizations of dg Loday–Pirashvili modules. To provide a concise characterization, a dg Loday–Pirashvili module is a non-negative and bounded dg \(\mathfrak {g}\)-module V paired with a weak morphism of dg \(\mathfrak {g}\)-modules \(\alpha :V\rightsquigarrow \mathfrak {g}\). Such a dg Loday–Pirashvili module resolves an arbitrarily specified classical Loday–Pirashvili module in the sense that it exists and is unique (up to homotopy). Dg Loday–Pirashvili modules can also be characterized through dg derivations. This perspective allows the calculation of the corresponding twisted Atiyah classes. By leveraging the Kapranov functor on the dg derivation arising from a dg Loday–Pirashvili module \((V,\alpha )\), a \(\hbox {Leibniz}_\infty [1]\) algebra structure can be derived on \(\wedge ^\bullet \mathfrak {g}^\vee \otimes V[1]\). The binary bracket of this structure corresponds to the twisted Atiyah cocycle. To exemplify these intricate algebraic structures through specific cases, we utilize this machinery to a particular type of dg Loday–Pirashvili modules stemming from Lie algebra pairs.

李代数上的Dg Loday-Pirashvili模
一个李代数\(\mathfrak {g}\)上的lodaypirashvili模是线性映射范畴中的一个李代数对象\(\bigl (G\xrightarrow {X} \mathfrak {g}\bigr )\),或者等价地,一个\(\mathfrak {g}\) -模G允许一个\(\mathfrak {g}\) -等变线性映射\(X:G\rightarrow \mathfrak {g}\)。研究了李代数上的dg Loday-Pirashvili模,它是Loday-Pirashvili模的一种自然推广,并建立了dg Loday-Pirashvili模的几个等价刻画。为了提供一个简洁的表征,dg lodaypirashvili模是一个非负的有界dg \(\mathfrak {g}\) -模V与dg \(\mathfrak {g}\) -模\(\alpha :V\rightsquigarrow \mathfrak {g}\)的弱态态配对。这样一个dg Loday-Pirashvili模块解析了一个任意指定的经典Loday-Pirashvili模块,因为它存在并且是唯一的(直到同伦)。Dg Loday-Pirashvili模也可以通过Dg推导来表征。这个透视图允许计算相应的扭曲Atiyah类。利用Kapranov函子对由dg Loday-Pirashvili模块\((V,\alpha )\)产生的dg推导,可以在\(\wedge ^\bullet \mathfrak {g}^\vee \otimes V[1]\)上推导出\(\hbox {Leibniz}_\infty [1]\)代数结构。该结构的二元支架对应于扭曲的Atiyah环。为了通过具体的例子来说明这些复杂的代数结构,我们利用这种机制来处理源自李代数对的特定类型的dg Loday-Pirashvili模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信