NNBSVR: Neural Network-Based Semantic Vector Representations of ICD-10 codes

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Monah Bou Hatoum, Jean Claude Charr, Alia Ghaddar, Christophe Guyeux, David Laiymani
{"title":"NNBSVR: Neural Network-Based Semantic Vector Representations of ICD-10 codes","authors":"Monah Bou Hatoum,&nbsp;Jean Claude Charr,&nbsp;Alia Ghaddar,&nbsp;Christophe Guyeux,&nbsp;David Laiymani","doi":"10.1007/s10489-025-06349-w","DOIUrl":null,"url":null,"abstract":"<div><p>Automatically predicting ICD-10 codes from clinical notes using machine learning models can reduce the burden of manual coding. However, existing methods often overlook the semantic relationships between ICD-10 codes, resulting in inaccurate evaluations when clinically similar codes are considered completely different. Traditional evaluation metrics, which rely on equality-based matching, fail to capture the clinical relevance of predicted codes. This study introduces <i>NNBSVR</i> (Neural Network-Based Semantic Vector Representations), a novel approach for generating semantic-based vector representations of ICD-10 codes. Unlike traditional approaches that rely on exact code matching, <i>NNBSVR</i> incorporates contextual and hierarchical information to enhance both prediction accuracy and evaluation methods. We validate <i>NNBSVR</i> using intrinsic and extrinsic evaluation methods. Intrinsic evaluation assesses the vectors’ ability to reconstruct the ICD-10 hierarchy and identify clinically meaningful clusters. Extrinsic evaluation compares our relevancy-based approach, which includes customized evaluation metrics, to traditional equality-based metrics on an ICD-10 code prediction task using a 9.57 million clinical notes corpus. <i>NNBSVR</i> demonstrates significant improvements over equality-based metrics, achieving a 9.81% gain in micro-F1 score on the training set and a 12.73% gain on the test set. A manual review by medical experts on a sample of 10,000 predictions confirms an accuracy of 92.58%, further validating our approach. This study makes two significant contributions: first, the development of semantic-based vector representations that encapsulate ICD-10 code relationships and context; second, the customization of evaluation metrics to incorporate clinical relevance. By addressing the limitations of traditional equality-based evaluation metrics, <i>NNBSVR</i> enhances the automated assignment of ICD-10 codes in clinical settings, demonstrating superior performance over existing methods.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06349-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatically predicting ICD-10 codes from clinical notes using machine learning models can reduce the burden of manual coding. However, existing methods often overlook the semantic relationships between ICD-10 codes, resulting in inaccurate evaluations when clinically similar codes are considered completely different. Traditional evaluation metrics, which rely on equality-based matching, fail to capture the clinical relevance of predicted codes. This study introduces NNBSVR (Neural Network-Based Semantic Vector Representations), a novel approach for generating semantic-based vector representations of ICD-10 codes. Unlike traditional approaches that rely on exact code matching, NNBSVR incorporates contextual and hierarchical information to enhance both prediction accuracy and evaluation methods. We validate NNBSVR using intrinsic and extrinsic evaluation methods. Intrinsic evaluation assesses the vectors’ ability to reconstruct the ICD-10 hierarchy and identify clinically meaningful clusters. Extrinsic evaluation compares our relevancy-based approach, which includes customized evaluation metrics, to traditional equality-based metrics on an ICD-10 code prediction task using a 9.57 million clinical notes corpus. NNBSVR demonstrates significant improvements over equality-based metrics, achieving a 9.81% gain in micro-F1 score on the training set and a 12.73% gain on the test set. A manual review by medical experts on a sample of 10,000 predictions confirms an accuracy of 92.58%, further validating our approach. This study makes two significant contributions: first, the development of semantic-based vector representations that encapsulate ICD-10 code relationships and context; second, the customization of evaluation metrics to incorporate clinical relevance. By addressing the limitations of traditional equality-based evaluation metrics, NNBSVR enhances the automated assignment of ICD-10 codes in clinical settings, demonstrating superior performance over existing methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信