Tanner B. Beckstrom, Tai M. Maaz, Jonathan L. Deenik, Hayley Peter-Contesse, Amy Koch, Christine Tallamy Glazer, Johanie Rivera-Zayas, Susan E. Crow
{"title":"From volcanic ash to abundant earth: understanding Andisol organic matter dynamics in relation to soil health on Hawaiʻi Island","authors":"Tanner B. Beckstrom, Tai M. Maaz, Jonathan L. Deenik, Hayley Peter-Contesse, Amy Koch, Christine Tallamy Glazer, Johanie Rivera-Zayas, Susan E. Crow","doi":"10.1007/s10533-025-01216-9","DOIUrl":null,"url":null,"abstract":"<div><p>To date, research on the role of organic matter dynamics in maintaining the health of (sub)tropical Andisols (i.e., volcanic ash-derived soils) is limited. High concentrations of poorly and noncrystalline minerals in these soils favor greater soil organic matter (SOM) accumulation than in phyllosilicate-dominant soils, yet SOM abundance and composition vary across volcanic landscapes. In this study, we measured the effects of moisture regime and current land use on soil health and SOM physical fractions and identified the carbon (C) and nitrogen (N) fractions that best predicted soil health scores in Andisols. We collected soil samples across humid (Udands) and dry (Ustands) moisture regimes and three land uses (croplands, pastures, forests) on Hawaiʻi Island. We measured nine dynamic soil properties and integrated them into a soil health score using a structural equation model. Then, we quantified the C and N contents of SOM physical fractions, including light particulate organic matter (LPOM), coarse heavy associated organic matter (CHAOM), and mineral associated organic matter (MAOM). We found that pastures and Udand forests scored highest in soil health while Ustand croplands scored lowest. Pastures contained greater proportions (% of total element) and contents (mg/g soil) of C and N in the CHAOM fraction, suggesting differences in CHAOM composition across ecosystems. All three physical fractions collectively explained 81% of soil health score variation, with MAOM-C explaining substantially more variation than LPOM-N and CHAOM-N. Our framework, which links soil C and N fractions to dynamic soil health properties, holistically captures the unique attributes of (sub)tropical Andisols rich in poorly and noncrystalline minerals.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01216-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01216-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To date, research on the role of organic matter dynamics in maintaining the health of (sub)tropical Andisols (i.e., volcanic ash-derived soils) is limited. High concentrations of poorly and noncrystalline minerals in these soils favor greater soil organic matter (SOM) accumulation than in phyllosilicate-dominant soils, yet SOM abundance and composition vary across volcanic landscapes. In this study, we measured the effects of moisture regime and current land use on soil health and SOM physical fractions and identified the carbon (C) and nitrogen (N) fractions that best predicted soil health scores in Andisols. We collected soil samples across humid (Udands) and dry (Ustands) moisture regimes and three land uses (croplands, pastures, forests) on Hawaiʻi Island. We measured nine dynamic soil properties and integrated them into a soil health score using a structural equation model. Then, we quantified the C and N contents of SOM physical fractions, including light particulate organic matter (LPOM), coarse heavy associated organic matter (CHAOM), and mineral associated organic matter (MAOM). We found that pastures and Udand forests scored highest in soil health while Ustand croplands scored lowest. Pastures contained greater proportions (% of total element) and contents (mg/g soil) of C and N in the CHAOM fraction, suggesting differences in CHAOM composition across ecosystems. All three physical fractions collectively explained 81% of soil health score variation, with MAOM-C explaining substantially more variation than LPOM-N and CHAOM-N. Our framework, which links soil C and N fractions to dynamic soil health properties, holistically captures the unique attributes of (sub)tropical Andisols rich in poorly and noncrystalline minerals.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.