From volcanic ash to abundant earth: understanding Andisol organic matter dynamics in relation to soil health on Hawaiʻi Island

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Tanner B. Beckstrom, Tai M. Maaz, Jonathan L. Deenik, Hayley Peter-Contesse, Amy Koch, Christine Tallamy Glazer, Johanie Rivera-Zayas, Susan E. Crow
{"title":"From volcanic ash to abundant earth: understanding Andisol organic matter dynamics in relation to soil health on Hawaiʻi Island","authors":"Tanner B. Beckstrom,&nbsp;Tai M. Maaz,&nbsp;Jonathan L. Deenik,&nbsp;Hayley Peter-Contesse,&nbsp;Amy Koch,&nbsp;Christine Tallamy Glazer,&nbsp;Johanie Rivera-Zayas,&nbsp;Susan E. Crow","doi":"10.1007/s10533-025-01216-9","DOIUrl":null,"url":null,"abstract":"<div><p>To date, research on the role of organic matter dynamics in maintaining the health of (sub)tropical Andisols (i.e., volcanic ash-derived soils) is limited. High concentrations of poorly and noncrystalline minerals in these soils favor greater soil organic matter (SOM) accumulation than in phyllosilicate-dominant soils, yet SOM abundance and composition vary across volcanic landscapes. In this study, we measured the effects of moisture regime and current land use on soil health and SOM physical fractions and identified the carbon (C) and nitrogen (N) fractions that best predicted soil health scores in Andisols. We collected soil samples across humid (Udands) and dry (Ustands) moisture regimes and three land uses (croplands, pastures, forests) on Hawaiʻi Island. We measured nine dynamic soil properties and integrated them into a soil health score using a structural equation model. Then, we quantified the C and N contents of SOM physical fractions, including light particulate organic matter (LPOM), coarse heavy associated organic matter (CHAOM), and mineral associated organic matter (MAOM). We found that pastures and Udand forests scored highest in soil health while Ustand croplands scored lowest. Pastures contained greater proportions (% of total element) and contents (mg/g soil) of C and N in the CHAOM fraction, suggesting differences in CHAOM composition across ecosystems. All three physical fractions collectively explained 81% of soil health score variation, with MAOM-C explaining substantially more variation than LPOM-N and CHAOM-N. Our framework, which links soil C and N fractions to dynamic soil health properties, holistically captures the unique attributes of (sub)tropical Andisols rich in poorly and noncrystalline minerals.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01216-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01216-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To date, research on the role of organic matter dynamics in maintaining the health of (sub)tropical Andisols (i.e., volcanic ash-derived soils) is limited. High concentrations of poorly and noncrystalline minerals in these soils favor greater soil organic matter (SOM) accumulation than in phyllosilicate-dominant soils, yet SOM abundance and composition vary across volcanic landscapes. In this study, we measured the effects of moisture regime and current land use on soil health and SOM physical fractions and identified the carbon (C) and nitrogen (N) fractions that best predicted soil health scores in Andisols. We collected soil samples across humid (Udands) and dry (Ustands) moisture regimes and three land uses (croplands, pastures, forests) on Hawaiʻi Island. We measured nine dynamic soil properties and integrated them into a soil health score using a structural equation model. Then, we quantified the C and N contents of SOM physical fractions, including light particulate organic matter (LPOM), coarse heavy associated organic matter (CHAOM), and mineral associated organic matter (MAOM). We found that pastures and Udand forests scored highest in soil health while Ustand croplands scored lowest. Pastures contained greater proportions (% of total element) and contents (mg/g soil) of C and N in the CHAOM fraction, suggesting differences in CHAOM composition across ecosystems. All three physical fractions collectively explained 81% of soil health score variation, with MAOM-C explaining substantially more variation than LPOM-N and CHAOM-N. Our framework, which links soil C and N fractions to dynamic soil health properties, holistically captures the unique attributes of (sub)tropical Andisols rich in poorly and noncrystalline minerals.

从火山灰到丰富的土壤:了解与夏威夷夏威夷岛土壤健康有关的andiol有机质动态
迄今为止,关于有机质动力学在维持(亚)热带andiols(即火山灰衍生土壤)健康方面的作用的研究有限。与层状硅酸盐为主的土壤相比,这些土壤中高浓度的贫矿物和非晶体矿物有利于土壤有机质(SOM)的积累,但SOM的丰度和组成因火山景观而异。在这项研究中,我们测量了水分制度和当前土地利用对土壤健康和SOM物理组分的影响,并确定了最能预测Andisols土壤健康分数的碳(C)和氮(N)组分。我们收集了夏威夷夏威夷岛潮湿(Udands)和干燥(Ustands)的土壤样本,以及三种土地用途(农田、牧场、森林)。我们测量了9种动态土壤特性,并使用结构方程模型将它们整合到土壤健康评分中。然后,我们量化了有机质物理组分的C和N含量,包括轻颗粒有机质(LPOM)、粗重伴生有机质(CHAOM)和矿物伴生有机质(MAOM)。我们发现,牧场和乌地森林在土壤健康方面得分最高,而乌地农田得分最低。牧草CHAOM组分中C和N的比例(占总元素的百分比)和含量(mg/g土壤)更高,表明不同生态系统CHAOM的组成存在差异。所有三个物理组分共同解释了81%的土壤健康评分变化,其中MAOM-C比LPOM-N和CHAOM-N解释的变化要大得多。我们的框架将土壤C和N组分与动态土壤健康特性联系起来,从整体上捕捉了(亚)热带和二醇的独特属性,富含贫矿物和非结晶矿物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信