Iterative Method for Accounting the Lunar–Solar Tide and Changes in Atmospheric Pressure

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
M. N. Drobyshev, D. V. Abramov, V. N. Koneshov
{"title":"Iterative Method for Accounting the Lunar–Solar Tide and Changes in Atmospheric Pressure","authors":"M. N. Drobyshev,&nbsp;D. V. Abramov,&nbsp;V. N. Koneshov","doi":"10.1134/S106935132470109X","DOIUrl":null,"url":null,"abstract":"<p>Obtaining the most accurate and reliable gravimetric data has always been and remains the main task of gravimetry. The purpose of the authors’ long-term research and this work in particular is to determine interference in gravimetric data caused by various external influences and to find ways to take them into account or eliminate them. The proposed method of iteratively taking pressure and tidal correction into account made it possible to increase the accuracy of single gravimetric readings to ±2 µGal. The main instruments for many years of research were relative automated gravimeters of the <i>CG Autograv</i> series from <i>Scintrex</i>; the main results obtained in this work are shown based on their example. In <i>CG</i>-5 and <i>CG</i>-6 gravimeters, the instrumental accuracy is 1.0 and 0.1 µGal, respectively. However, it cannot be said that a single reading will give the gravity increment with the specified accuracy. Relative gravimeters, in addition to the desired value, also record the device response to inertial influence, changes in meteorological factors, and its own hardware errors, which cannot be eliminated without additional information. Under the conditions of the Zapolskoye geophysical observatory in the Vladimir region, continuous gravimetric, seismic, and meteorological measurements were carried out for 8.5 months. The obtained data made it possible to analyze the possibility of partially taking the influence of the atmospheric pressure and determining the correct delta factors for 20 groups of waves with periods of 48 days or less into account. The minimum duration of the gravimetric series to obtain delta factors of waves with periods from 0.02 to 3.38 cycles per day was also estimated at 6 months.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 6","pages":"1290 - 1296"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S106935132470109X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining the most accurate and reliable gravimetric data has always been and remains the main task of gravimetry. The purpose of the authors’ long-term research and this work in particular is to determine interference in gravimetric data caused by various external influences and to find ways to take them into account or eliminate them. The proposed method of iteratively taking pressure and tidal correction into account made it possible to increase the accuracy of single gravimetric readings to ±2 µGal. The main instruments for many years of research were relative automated gravimeters of the CG Autograv series from Scintrex; the main results obtained in this work are shown based on their example. In CG-5 and CG-6 gravimeters, the instrumental accuracy is 1.0 and 0.1 µGal, respectively. However, it cannot be said that a single reading will give the gravity increment with the specified accuracy. Relative gravimeters, in addition to the desired value, also record the device response to inertial influence, changes in meteorological factors, and its own hardware errors, which cannot be eliminated without additional information. Under the conditions of the Zapolskoye geophysical observatory in the Vladimir region, continuous gravimetric, seismic, and meteorological measurements were carried out for 8.5 months. The obtained data made it possible to analyze the possibility of partially taking the influence of the atmospheric pressure and determining the correct delta factors for 20 groups of waves with periods of 48 days or less into account. The minimum duration of the gravimetric series to obtain delta factors of waves with periods from 0.02 to 3.38 cycles per day was also estimated at 6 months.

Abstract Image

计算月日潮汐和大气压力变化的迭代方法
获得最准确、最可靠的重力数据一直是并且仍然是重力测量的主要任务。作者长期研究的目的,特别是这项工作的目的是确定各种外部影响对重力数据造成的干扰,并找到考虑或消除这些干扰的方法。所提出的迭代考虑压力和潮汐校正的方法可以将单次重力读数的精度提高到±2µGal。多年来研究的主要仪器是Scintrex公司CG autogravity系列的相对自动化重力仪;通过算例给出了本文所得到的主要结果。在CG-5和CG-6重力仪中,仪器精度分别为1.0和0.1µGal。然而,不能说一次读数就能给出给定精度的重力增量。相对重力仪除了需要的数值外,还需要记录设备对惯性影响、气象因素变化和自身硬件误差的响应,如果没有额外的信息,这些是无法消除的。在弗拉基米尔地区扎波尔斯科耶地球物理观测站的条件下,连续进行了8.5个月的重力、地震和气象测量。获得的数据使我们能够分析部分考虑大气压力影响的可能性,并确定周期为48天或更短的20组波的正确δ因子。估计获得周期为0.02 ~ 3.38周期/天的波浪δ因子的重力系列所需的最短时间为6个月。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信